Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation

Jialin Yu , Alexandra I. Cristea , Anoushka Harit , Zhongtian Sun , Olanrewaju Tahir Aduragba , Lei Shi , Noura Al Moubayed
{"title":"Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation","authors":"Jialin Yu ,&nbsp;Alexandra I. Cristea ,&nbsp;Anoushka Harit ,&nbsp;Zhongtian Sun ,&nbsp;Olanrewaju Tahir Aduragba ,&nbsp;Lei Shi ,&nbsp;Noura Al Moubayed","doi":"10.1016/j.aiopen.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores deep latent variable models for semi-supervised paraphrase generation, where the missing target pair for unlabelled data is modelled as a latent paraphrase sequence. We present a novel unsupervised model named <em>variational sequence auto-encoding reconstruction</em> (<strong>VSAR</strong>), which performs latent sequence inference given an observed text. To leverage information from text pairs, we additionally introduce a novel supervised model we call <em>dual directional learning</em> (<strong>DDL</strong>), which is designed to integrate with our proposed VSAR model. Combining VSAR with DDL (<strong>DDL+VSAR</strong>) enables us to conduct semi-supervised learning. Still, the combined model suffers from a cold-start problem. To further combat this issue, we propose an improved weight initialisation solution, leading to a novel two-stage training scheme we call <em>knowledge-reinforced-learning</em> (<strong>KRL</strong>). Our empirical evaluations suggest that the combined model yields competitive performance against the state-of-the-art supervised baselines on complete data. Furthermore, in scenarios where only a fraction of the labelled pairs are available, our combined model consistently outperforms the strong supervised model baseline (<strong>DDL</strong>) by a significant margin (<span><math><mrow><mi>p</mi><mo>&lt;</mo><mo>.</mo><mn>05</mn></mrow></math></span>; Wilcoxon test). Our code is publicly available at https://github.com/jialin-yu/latent-sequence-paraphrase.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"4 ","pages":"Pages 19-32"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651023000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores deep latent variable models for semi-supervised paraphrase generation, where the missing target pair for unlabelled data is modelled as a latent paraphrase sequence. We present a novel unsupervised model named variational sequence auto-encoding reconstruction (VSAR), which performs latent sequence inference given an observed text. To leverage information from text pairs, we additionally introduce a novel supervised model we call dual directional learning (DDL), which is designed to integrate with our proposed VSAR model. Combining VSAR with DDL (DDL+VSAR) enables us to conduct semi-supervised learning. Still, the combined model suffers from a cold-start problem. To further combat this issue, we propose an improved weight initialisation solution, leading to a novel two-stage training scheme we call knowledge-reinforced-learning (KRL). Our empirical evaluations suggest that the combined model yields competitive performance against the state-of-the-art supervised baselines on complete data. Furthermore, in scenarios where only a fraction of the labelled pairs are available, our combined model consistently outperforms the strong supervised model baseline (DDL) by a significant margin (p<.05; Wilcoxon test). Our code is publicly available at https://github.com/jialin-yu/latent-sequence-paraphrase.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为潜在序列的语言:半监督转述生成的深层潜在变量模型
本文探讨了半监督转述生成的深层潜变量模型,其中未标记数据的缺失目标对被建模为潜转述序列。我们提出了一种新的无监督模型,称为变分序列自动编码重建(VSAR),该模型在给定观测文本的情况下执行潜在序列推理。为了利用来自文本对的信息,我们还引入了一种新的监督模型,称为双向学习(DDL),该模型旨在与我们提出的VSAR模型集成。将VSAR与DDL相结合(DDL+VSAR)使我们能够进行半监督学习。尽管如此,合并后的车型仍存在冷启动问题。为了进一步解决这个问题,我们提出了一种改进的权重初始化解决方案,从而产生了一种新的两阶段训练方案,我们称之为知识强化学习(KRL)。我们的经验评估表明,在完整数据上,与最先进的监督基线相比,组合模型产生了具有竞争力的性能。此外,在只有一小部分标记对可用的情况下,我们的组合模型始终显著优于强监督模型基线(DDL)(p<;.05;Wilcoxon检验)。我们的代码可在https://github.com/jialin-yu/latent-sequence-paraphrase.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
期刊最新文献
GPT understands, too Adaptive negative representations for graph contrastive learning PM2.5 forecasting under distribution shift: A graph learning approach Enhancing neural network classification using fractional-order activation functions CPT: Colorful Prompt Tuning for pre-trained vision-language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1