{"title":"Machine learning methods for the search for L&T brown dwarfs in the data of modern sky surveys","authors":"A. Avdeeva","doi":"10.1016/j.ascom.2023.100744","DOIUrl":null,"url":null,"abstract":"<div><p><span>According to various estimates, brown dwarfs (BD) should account for up to 25 percent of all objects in the Galaxy. However, few of them are discovered and well-studied, both individually and as a population. Homogeneous and complete samples of brown dwarfs are needed for these kinds of studies. Due to their weakness, spectral studies of brown dwarfs are rather laborious. For this reason, creating a significant reliable sample of brown dwarfs, confirmed by spectroscopic observations, seems unattainable at the moment. Numerous attempts have been made to search for and create a set of brown dwarfs using their colours as a decision rule applied to a vast amount of survey data. In this work, we use </span>machine learning<span><span> methods such as Random Forest Classifier<span>, XGBoost, </span></span>SVM<span> Classifier and TabNet on PanStarrs DR1, 2MASS and WISE data to distinguish L and T brown dwarfs from objects of other spectral and luminosity classes. The explanation of the models is discussed. We also compare our models with classical decision rules, proving their efficiency and relevance.</span></span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133723000598","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
According to various estimates, brown dwarfs (BD) should account for up to 25 percent of all objects in the Galaxy. However, few of them are discovered and well-studied, both individually and as a population. Homogeneous and complete samples of brown dwarfs are needed for these kinds of studies. Due to their weakness, spectral studies of brown dwarfs are rather laborious. For this reason, creating a significant reliable sample of brown dwarfs, confirmed by spectroscopic observations, seems unattainable at the moment. Numerous attempts have been made to search for and create a set of brown dwarfs using their colours as a decision rule applied to a vast amount of survey data. In this work, we use machine learning methods such as Random Forest Classifier, XGBoost, SVM Classifier and TabNet on PanStarrs DR1, 2MASS and WISE data to distinguish L and T brown dwarfs from objects of other spectral and luminosity classes. The explanation of the models is discussed. We also compare our models with classical decision rules, proving their efficiency and relevance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.