Di Chen , Xiao-Yu Shen , Rong-Hua Zhang , Luo-Yi Yan , Zheng Cheng , Gui-Xian Tian , Dong-Hai Lin , Xin-Wen Zhou
{"title":"Highly active and durable PdFe/Cu nanocatalysts prepared by liquid phase synthesis for ethanol electrooxidation reaction","authors":"Di Chen , Xiao-Yu Shen , Rong-Hua Zhang , Luo-Yi Yan , Zheng Cheng , Gui-Xian Tian , Dong-Hai Lin , Xin-Wen Zhou","doi":"10.1016/j.asems.2023.100075","DOIUrl":null,"url":null,"abstract":"<div><p>In the face of environmental pollution and an energy shortage, how to reduce the cost of a noble metal catalyst in clean energy such as the fuel cell system and improve its electrocatalytic performance is one of the hot issues in this field. Here, a facile stepwise co-reduction route for synthesizing a series of PdFe/Cu catalysts with surface reconstruction is investigated and the ethanol oxidation reaction (EOR) performance is explored. The greater exposure of Pd active sites makes it excellent in EOR in alkaline media compared to the homemade and commercial Pd black catalyst. The mass activity of PdFe/Cu (794.97 mA mg<sup>−1</sup><sub>Pd</sub>) is 2.52 times that of the Pd black catalyst (315.64 mA mg<sup>−1</sup><sub>Pd</sub>). This kind of PdFe/Cu catalyst shows enhanced mass current density (255.66 mA mg<sup>−1</sup><sub>Pd</sub>) after the 1800 s chronoamperometry test and only exhibits a decay of 1.4% after accelerated 500-cycle measurement. The enhanced EOR performance may be due to the change in the electronic structure of Pd caused by synergistic and strain effects among Pd, Fe, and Cu. This work provides an effective and kindly strategy to synthesize electrocatalysts with superior activity and durability in relation to EOR.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"2 4","pages":"Article 100075"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X23000304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the face of environmental pollution and an energy shortage, how to reduce the cost of a noble metal catalyst in clean energy such as the fuel cell system and improve its electrocatalytic performance is one of the hot issues in this field. Here, a facile stepwise co-reduction route for synthesizing a series of PdFe/Cu catalysts with surface reconstruction is investigated and the ethanol oxidation reaction (EOR) performance is explored. The greater exposure of Pd active sites makes it excellent in EOR in alkaline media compared to the homemade and commercial Pd black catalyst. The mass activity of PdFe/Cu (794.97 mA mg−1Pd) is 2.52 times that of the Pd black catalyst (315.64 mA mg−1Pd). This kind of PdFe/Cu catalyst shows enhanced mass current density (255.66 mA mg−1Pd) after the 1800 s chronoamperometry test and only exhibits a decay of 1.4% after accelerated 500-cycle measurement. The enhanced EOR performance may be due to the change in the electronic structure of Pd caused by synergistic and strain effects among Pd, Fe, and Cu. This work provides an effective and kindly strategy to synthesize electrocatalysts with superior activity and durability in relation to EOR.
面对环境污染和能源短缺,如何降低燃料电池系统等清洁能源中贵金属催化剂的成本,提高其电催化性能是该领域的热点问题之一。本文研究了一种简单的分步共还原路线,用于合成一系列具有表面重建的PdFe/Cu催化剂,并探索了乙醇氧化反应(EOR)性能。与国产和商用钯黑催化剂相比,钯活性位点的更多暴露使其在碱性介质中具有优异的EOR性能。PdFe/Cu(794.97 mA mg−1Pd)的质量活性是Pd黑催化剂(315.64 mA mg−3Pd)的2.52倍。这种PdFe/Cu催化剂在1800 s计时电流测试后显示出增强的质量电流密度(255.66 mA mg−1Pd),并且在加速500循环测量后仅显示出1.4%的衰减。提高EOR性能可能是由于Pd、Fe和Cu之间的协同和应变效应导致Pd的电子结构发生变化。这项工作为合成与EOR相关的具有优异活性和耐久性的电催化剂提供了一种有效而友好的策略。