Macroscopic traffic characterization based on driver memory and traffic stimuli

Q1 Engineering Transportation Engineering Pub Date : 2023-10-14 DOI:10.1016/j.treng.2023.100208
Zawar H. Khan , Waheed Imran , T. Aaron Gulliver , Khurram S. Khattak , Ghayas Ud Din , Nasru Minallah , Mushtaq A. Khan
{"title":"Macroscopic traffic characterization based on driver memory and traffic stimuli","authors":"Zawar H. Khan ,&nbsp;Waheed Imran ,&nbsp;T. Aaron Gulliver ,&nbsp;Khurram S. Khattak ,&nbsp;Ghayas Ud Din ,&nbsp;Nasru Minallah ,&nbsp;Mushtaq A. Khan","doi":"10.1016/j.treng.2023.100208","DOIUrl":null,"url":null,"abstract":"<div><p>A new macroscopic traffic flow model is proposed which incorporates traffic alignment behavior at transitions. In this model, velocity is a function of the distance headway and driver response time. It can be used to characterize the traffic flow for both uniform and non uniform headways. The well-known Zhang model characterizes this flow based on driver memory which can produce unrealistic results. The performance of the proposed Khan-Imran-Gulliver (KIG) and Zhang models is evaluated for an inactive bottleneck on a 2000 m circular road. The results obtained show that the traffic behavior with the KIG model is more realistic.</p></div>","PeriodicalId":34480,"journal":{"name":"Transportation Engineering","volume":"14 ","pages":"Article 100208"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666691X23000489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A new macroscopic traffic flow model is proposed which incorporates traffic alignment behavior at transitions. In this model, velocity is a function of the distance headway and driver response time. It can be used to characterize the traffic flow for both uniform and non uniform headways. The well-known Zhang model characterizes this flow based on driver memory which can produce unrealistic results. The performance of the proposed Khan-Imran-Gulliver (KIG) and Zhang models is evaluated for an inactive bottleneck on a 2000 m circular road. The results obtained show that the traffic behavior with the KIG model is more realistic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于驾驶员记忆和交通刺激的宏观交通表征
提出了一种新的宏观交通流模型,该模型结合了过渡段的交通线形行为。在这个模型中,速度是车头时距和驾驶员反应时间的函数。它可用于表征均匀和非均匀车头时距的交通流。众所周知的张模型基于驾驶员记忆来描述这种流动,这可能会产生不切实际的结果。针对2000m环形道路上的非活动瓶颈,对所提出的Khan-Imran Gulliver(KIG)和Zhang模型的性能进行了评估。结果表明,KIG模型的交通行为更加真实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportation Engineering
Transportation Engineering Engineering-Automotive Engineering
CiteScore
8.10
自引率
0.00%
发文量
46
审稿时长
90 days
期刊最新文献
Effect of aging kinetics on the fatigue behavior of asphalt mixtures incorporating various RAP contents Analysis of electric vehicle charging behaviour in existing regional public and workplace charging infrastructure: A case study in the North-East UK Effect of clay materials on phase separation in plastic bag waste-modified bitumen during high-temperature storage Low-budget equipment facilitating skid coefficient extraction for traffic accident analysis Eco-driving optimal control for electric vehicles with driver preferences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1