Wenqi Ding , Xuanbo Huang , Shuobiao Li , Wentong Liu , Qingzhao Zhang
{"title":"Flexural stiffness characterization of the corrugated steel–concrete composite structure for tunnel projects","authors":"Wenqi Ding , Xuanbo Huang , Shuobiao Li , Wentong Liu , Qingzhao Zhang","doi":"10.1016/j.undsp.2023.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Corrugated steel–concrete (CSC) composite structures are increasingly used in tunnel and culvert projects due to their good mechanical properties. The design of CSC composite structures is often governed by deflection limits in service, hence it becomes crucial to evaluate accurately their flexural stiffness. In this work, the deflection deformation mechanism of CSC composite structure is studied by experimental and numerical methods, and a simplified formula for calculating the flexural stiffness is established. In addition, the deflection results obtained by different methods are compared and analyzed. It is found that: (1) the flexural stiffness of the CSC composite structure is constant only when the load is small, and after the bending moment exceeds a certain value, the flexural stiffness will gradually become smaller as the bending moment increases. (2) The value of the bending moment corresponding to the end of the elastic stage of the bending moment-deflection curve increases with the increase of the axial force in the composite structure. (3) As the axial force of the composite structure increases, the flexural bearing capacity of the structure increases first and then decreases.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967423000466","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
Corrugated steel–concrete (CSC) composite structures are increasingly used in tunnel and culvert projects due to their good mechanical properties. The design of CSC composite structures is often governed by deflection limits in service, hence it becomes crucial to evaluate accurately their flexural stiffness. In this work, the deflection deformation mechanism of CSC composite structure is studied by experimental and numerical methods, and a simplified formula for calculating the flexural stiffness is established. In addition, the deflection results obtained by different methods are compared and analyzed. It is found that: (1) the flexural stiffness of the CSC composite structure is constant only when the load is small, and after the bending moment exceeds a certain value, the flexural stiffness will gradually become smaller as the bending moment increases. (2) The value of the bending moment corresponding to the end of the elastic stage of the bending moment-deflection curve increases with the increase of the axial force in the composite structure. (3) As the axial force of the composite structure increases, the flexural bearing capacity of the structure increases first and then decreases.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.