Which parameterization of the Matérn covariance function?

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-10-12 DOI:10.1016/j.spasta.2023.100787
Kesen Wang , Sameh Abdulah , Ying Sun , Marc G. Genton
{"title":"Which parameterization of the Matérn covariance function?","authors":"Kesen Wang ,&nbsp;Sameh Abdulah ,&nbsp;Ying Sun ,&nbsp;Marc G. Genton","doi":"10.1016/j.spasta.2023.100787","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The Matérn family of covariance functions is currently the most popularly used model in spatial </span>statistics, geostatistics, and machine learning to specify the correlation between two geographical locations based on spatial distance. Compared to existing covariance functions, the Matérn family has more flexibility in data fitting because it allows the control of the field smoothness through a dedicated parameter. Moreover, it generalizes other popular covariance functions. However, fitting the smoothness parameter is computationally challenging since it complicates the optimization process. As a result, some practitioners set the smoothness parameter at an arbitrary value to reduce the optimization convergence time. In the literature, studies have used various parameterizations of the Matérn covariance function, assuming they are equivalent. This work aims at studying the effectiveness of different parameterizations under various settings. We demonstrate the feasibility of inferring all parameters simultaneously and quantifying their uncertainties on large-scale data using the </span><em>ExaGeoStat</em><span><span><span> parallel software. We also highlight the importance of the smoothness parameter by analyzing the Fisher information of the statistical parameters. We show that the various parameterizations have different properties and differ from several perspectives. In particular, we study the three most popular parameterizations in terms of parameter estimation accuracy, modeling accuracy and efficiency, prediction efficiency, </span>uncertainty quantification, and </span>asymptotic properties. We further demonstrate their differing performances under nugget effects and approximated covariance. Lastly, we give recommendations for parameterization selection based on our experimental results.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The Matérn family of covariance functions is currently the most popularly used model in spatial statistics, geostatistics, and machine learning to specify the correlation between two geographical locations based on spatial distance. Compared to existing covariance functions, the Matérn family has more flexibility in data fitting because it allows the control of the field smoothness through a dedicated parameter. Moreover, it generalizes other popular covariance functions. However, fitting the smoothness parameter is computationally challenging since it complicates the optimization process. As a result, some practitioners set the smoothness parameter at an arbitrary value to reduce the optimization convergence time. In the literature, studies have used various parameterizations of the Matérn covariance function, assuming they are equivalent. This work aims at studying the effectiveness of different parameterizations under various settings. We demonstrate the feasibility of inferring all parameters simultaneously and quantifying their uncertainties on large-scale data using the ExaGeoStat parallel software. We also highlight the importance of the smoothness parameter by analyzing the Fisher information of the statistical parameters. We show that the various parameterizations have different properties and differ from several perspectives. In particular, we study the three most popular parameterizations in terms of parameter estimation accuracy, modeling accuracy and efficiency, prediction efficiency, uncertainty quantification, and asymptotic properties. We further demonstrate their differing performances under nugget effects and approximated covariance. Lastly, we give recommendations for parameterization selection based on our experimental results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哪一种参数化的matsamn协方差函数?
Matérn协方差函数族是目前空间统计学、地统计学和机器学习中最常用的基于空间距离指定两个地理位置之间相关性的模型。与现有的协方差函数相比,Matérn族在数据拟合方面具有更大的灵活性,因为它允许通过专用参数控制场平滑度。此外,它还推广了其他流行的协方差函数。然而,拟合平滑度参数在计算上具有挑战性,因为它使优化过程复杂化。因此,一些从业者将平滑度参数设置为任意值,以减少优化收敛时间。在文献中,研究使用了Matérn协方差函数的各种参数化,假设它们是等价的。这项工作旨在研究在不同设置下不同参数化的有效性。我们证明了使用ExaGeoStat并行软件在大规模数据上同时推断所有参数并量化其不确定性的可行性。我们还通过分析统计参数的Fisher信息来强调平滑度参数的重要性。我们证明了各种参数化具有不同的性质,并且从几个角度来看是不同的。特别是,我们研究了三种最流行的参数化,即参数估计精度、建模精度和效率、预测效率、不确定性量化和渐近性质。我们进一步证明了它们在金块效应和近似协方差下的不同性能。最后,根据实验结果提出了参数化选择的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1