Biofabrication of natural Au/bacterial cellulose hydrogel for bone tissue regeneration via in-situ fermentation

Q1 Engineering Smart Materials in Medicine Pub Date : 2023-01-01 DOI:10.1016/j.smaim.2022.06.001
Caoxing Huang , Qing Ye , Jian Dong , Lan Li , Min Wang , Yunyang Zhang , Yibo Zhang , Xucai Wang , Peng Wang , Qing Jiang
{"title":"Biofabrication of natural Au/bacterial cellulose hydrogel for bone tissue regeneration via in-situ fermentation","authors":"Caoxing Huang ,&nbsp;Qing Ye ,&nbsp;Jian Dong ,&nbsp;Lan Li ,&nbsp;Min Wang ,&nbsp;Yunyang Zhang ,&nbsp;Yibo Zhang ,&nbsp;Xucai Wang ,&nbsp;Peng Wang ,&nbsp;Qing Jiang","doi":"10.1016/j.smaim.2022.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Bacterial cellulose (BC) possesses the desirable properties of biocompatibility, high porosity, high surface area and noticeable mechanical strength as a scaffold in bone tissue engineering. However, the lack of osteogenic activity restricts its application. In this study, gold nanoparticles (GNPs) with excellent osteogenic differentiation ability were incorporated into the network of BC hydrogel (Au/BC hydrogels) by the in-situ fermentation. The effects of GNPs on physicochemical properties of BC hydrogel and subsequently <em>in vitro</em> osteogenic differentiation and <em>in vivo</em> bone regeneration of Au/BC hydrogels were comprehensively investigated. The results showed that the increased feeding amounts of GNPs could remarkablly enhance the Au/BC hydrogels with better mechanical properties, higher porosity, larger surface area, and biocompatibility. The sustainable release of GNPs endowed the hydrogels with an outstanding biological activity in facilitating osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Mechanism research showed that autophagy might be a potential pathway for Au/BC hydrogels-induced osteogenic differentiation of hBMSCs. In addition, Au/BC hydrogel exhibited an excellent <em>in vivo</em> bone repair performance in a rabbit model of femoral defect, which was evidenced by the significant newly bone formation. Overall, the multifunctional Au/BC hydrogels fabricated by in-situ fermentation could serve as a good scaffold for promoting bone tissue regeneration in clinic.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183422000230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial cellulose (BC) possesses the desirable properties of biocompatibility, high porosity, high surface area and noticeable mechanical strength as a scaffold in bone tissue engineering. However, the lack of osteogenic activity restricts its application. In this study, gold nanoparticles (GNPs) with excellent osteogenic differentiation ability were incorporated into the network of BC hydrogel (Au/BC hydrogels) by the in-situ fermentation. The effects of GNPs on physicochemical properties of BC hydrogel and subsequently in vitro osteogenic differentiation and in vivo bone regeneration of Au/BC hydrogels were comprehensively investigated. The results showed that the increased feeding amounts of GNPs could remarkablly enhance the Au/BC hydrogels with better mechanical properties, higher porosity, larger surface area, and biocompatibility. The sustainable release of GNPs endowed the hydrogels with an outstanding biological activity in facilitating osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Mechanism research showed that autophagy might be a potential pathway for Au/BC hydrogels-induced osteogenic differentiation of hBMSCs. In addition, Au/BC hydrogel exhibited an excellent in vivo bone repair performance in a rabbit model of femoral defect, which was evidenced by the significant newly bone formation. Overall, the multifunctional Au/BC hydrogels fabricated by in-situ fermentation could serve as a good scaffold for promoting bone tissue regeneration in clinic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位发酵制备用于骨组织再生的天然金/细菌纤维素水凝胶
细菌纤维素(BC)作为骨组织工程的支架材料,具有良好的生物相容性、高孔隙率、高表面积和显著的机械强度。然而,缺乏成骨活性限制了其应用。在本研究中,通过原位发酵将具有优异成骨分化能力的金纳米粒子(GNPs)掺入BC水凝胶(Au/BC水凝胶)的网络中。全面研究了GNPs对BC水凝胶理化性质的影响,以及随后Au/BC水凝胶的体外成骨分化和体内骨再生。结果表明,增加GNPs的加入量可以显著增强Au/BC水凝胶的力学性能、孔隙率、表面积和生物相容性。GNPs的可持续释放使水凝胶在促进人骨髓源性间充质干细胞(hBMSCs)的成骨分化方面具有突出的生物活性。机制研究表明,自噬可能是Au/BC水凝胶诱导hBMSCs成骨分化的潜在途径。此外,Au/BC水凝胶在兔股骨缺损模型中表现出优异的体内骨修复性能,这可以通过显著的新骨形成来证明。总之,通过原位发酵制备的多功能Au/BC水凝胶可以在临床上作为促进骨组织再生的良好支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
期刊最新文献
Externally triggered drug delivery systems Advances of surface modification to alleviate oxidative stress-induced valve degeneration The state-of-the-art therapeutic paradigms against sepsis Magnesium-based bioceramic-enhanced composites fabricated via friction stir processing Mitochondrial targeted prodrug nanoparticles for chemo-photodynamic combinational tumour therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1