Hao Wang , Hongxia Wan , Qiqi Wang , Ying Ma , Guorui Su , Xiaodong Cao , Huichang Gao
{"title":"Engineered multifunctional silk fibroin/gelatin hydrogel conduit loaded with miR-29a@ZIF-8 nanoparticles for peripheral nerve regeneration","authors":"Hao Wang , Hongxia Wan , Qiqi Wang , Ying Ma , Guorui Su , Xiaodong Cao , Huichang Gao","doi":"10.1016/j.smaim.2023.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>Peripheral nerve injury (PNI) is a common surgical disease. In recent years, with the development of tissue engineering materials, nerve guidance conduit (NGC) is expected to replace autologous nerve transplantation and become a new method for the treatment of PNI. In this work, we developed a multifunctional silk fibroin (SF)/gelatin-tyramine (GT) composite hydrogel conduit with flexible adjustable size by using a diffusion-driven cross-linking method. Furthermore, the ZIF-8 nanoparticles loaded with miR-29a (miR-29a@ZIF-8) delivery system was constructed and compounded into SF/GT hydrogel conduit to enhance its bioactivity and neural repair effects through sustained miR-29a release. In vitro cell experiments showed that SF/GT hydrogel conduit could significantly promote the myelination of Schwann cells (SCs), neuronal differentiation and axon extension of PC12 cells. In addition, it was worth mentioning that SF/GT hydrogel conduit could also regulate the immune microenvironment of nerve regeneration by promoting the transformation of macrophages from M1 phenotype to M2 phenotype, indicating a potential application as nerve guidance conduit in peripheral nerve repair.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 480-492"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183423000066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
Peripheral nerve injury (PNI) is a common surgical disease. In recent years, with the development of tissue engineering materials, nerve guidance conduit (NGC) is expected to replace autologous nerve transplantation and become a new method for the treatment of PNI. In this work, we developed a multifunctional silk fibroin (SF)/gelatin-tyramine (GT) composite hydrogel conduit with flexible adjustable size by using a diffusion-driven cross-linking method. Furthermore, the ZIF-8 nanoparticles loaded with miR-29a (miR-29a@ZIF-8) delivery system was constructed and compounded into SF/GT hydrogel conduit to enhance its bioactivity and neural repair effects through sustained miR-29a release. In vitro cell experiments showed that SF/GT hydrogel conduit could significantly promote the myelination of Schwann cells (SCs), neuronal differentiation and axon extension of PC12 cells. In addition, it was worth mentioning that SF/GT hydrogel conduit could also regulate the immune microenvironment of nerve regeneration by promoting the transformation of macrophages from M1 phenotype to M2 phenotype, indicating a potential application as nerve guidance conduit in peripheral nerve repair.