Platinum nanoparticles enhance osteogenic differentiation of human dental follicle stem cells via scavenging ROS

Q1 Engineering Smart Materials in Medicine Pub Date : 2023-01-01 DOI:10.1016/j.smaim.2023.06.004
Zheng Wang , Jiaxun Wang , Jiacheng Liu , Yating Zhang , Jingyi Zhang , Ruimeng Yang , Zhaosong Meng , Xiaoqun Gong , Lei Sui
{"title":"Platinum nanoparticles enhance osteogenic differentiation of human dental follicle stem cells via scavenging ROS","authors":"Zheng Wang ,&nbsp;Jiaxun Wang ,&nbsp;Jiacheng Liu ,&nbsp;Yating Zhang ,&nbsp;Jingyi Zhang ,&nbsp;Ruimeng Yang ,&nbsp;Zhaosong Meng ,&nbsp;Xiaoqun Gong ,&nbsp;Lei Sui","doi":"10.1016/j.smaim.2023.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>The over-accumulation of ROS during prolonged <em>in vitro</em> expansion could negatively affect the properties of stem cells. This leads to a reduced capacity for self-renewal and a lower potential for multiple differentiation, ultimately hindering their applicability in regenerative medicine. Herein, we fabricated platinum nanoparticles (PtNPs) as a potential biocompatible antioxidant to efficiently eliminate the ROS accumulation in human dental follicle stem cells (hDFSCs) during <em>in vitro</em> expansion, thereby enhancing hDFSCs proliferation and osteogenic differentiation. Transcriptome analysis revealed that PI3K/AKT signaling pathway was activated in PtNPs-treated hDFSCs. Transplantation of PtNPs-treated rDFSCs could facilitate new bone formation compared to transplantation of PBS or un-treated rDFSCs, leading to efficient regeneration of bone tissue in rat mandibular bone defect models. In conclusion, PtNPs offered a novel antioxidative strategy to improve stem cell properties and stem-cells-based alveolar bone regeneration.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183423000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

The over-accumulation of ROS during prolonged in vitro expansion could negatively affect the properties of stem cells. This leads to a reduced capacity for self-renewal and a lower potential for multiple differentiation, ultimately hindering their applicability in regenerative medicine. Herein, we fabricated platinum nanoparticles (PtNPs) as a potential biocompatible antioxidant to efficiently eliminate the ROS accumulation in human dental follicle stem cells (hDFSCs) during in vitro expansion, thereby enhancing hDFSCs proliferation and osteogenic differentiation. Transcriptome analysis revealed that PI3K/AKT signaling pathway was activated in PtNPs-treated hDFSCs. Transplantation of PtNPs-treated rDFSCs could facilitate new bone formation compared to transplantation of PBS or un-treated rDFSCs, leading to efficient regeneration of bone tissue in rat mandibular bone defect models. In conclusion, PtNPs offered a novel antioxidative strategy to improve stem cell properties and stem-cells-based alveolar bone regeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铂纳米颗粒通过清除活性氧促进人牙滤泡干细胞成骨分化
ROS在长时间体外扩增过程中的过度积累可能会对干细胞的特性产生负面影响。这导致自我更新能力降低,多重分化的潜力降低,最终阻碍了它们在再生医学中的应用。在此,我们制备了铂纳米颗粒(PtNPs),作为一种潜在的生物相容性抗氧化剂,可以在体外扩增过程中有效消除人类牙毛囊干细胞(hDFSCs)中ROS的积累,从而增强hDFSC的增殖和成骨分化。转录组分析显示,在PtNPs处理的hDFSC中,PI3K/AKT信号通路被激活。与PBS或未处理的rDFSCs的移植相比,PtNPs处理的rFSCs的移植可以促进新骨的形成,从而在大鼠下颌骨缺损模型中实现骨组织的有效再生。总之,PtNPs为改善干细胞特性和基于干细胞的牙槽骨再生提供了一种新的抗氧化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
期刊最新文献
Externally triggered drug delivery systems Advances of surface modification to alleviate oxidative stress-induced valve degeneration The state-of-the-art therapeutic paradigms against sepsis Magnesium-based bioceramic-enhanced composites fabricated via friction stir processing Mitochondrial targeted prodrug nanoparticles for chemo-photodynamic combinational tumour therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1