Three-dimensional convolutional neural network for age-at-death estimation of deceased individuals through cranial computed tomography scans

IF 0.8 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Forensic Imaging Pub Date : 2023-09-01 DOI:10.1016/j.fri.2023.200557
Maya A. Joshi , Sean D. Tallman
{"title":"Three-dimensional convolutional neural network for age-at-death estimation of deceased individuals through cranial computed tomography scans","authors":"Maya A. Joshi ,&nbsp;Sean D. Tallman","doi":"10.1016/j.fri.2023.200557","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate age-at-death (AAD) estimation is integral in establishing biological profiles in forensic anthropology, though standardized multivariate techniques are lacking. The current study developed and tested a three-dimensional convolutional neural network and three model variations with 1,224 de-identified cranial CT scans from the New Mexico Decedent Image Database. Each model required an input of an individual's cranial CT scan and outputted an AAD estimation. Model 3 was superior, successfully predicting AAD within 1.5 decades.</p></div>","PeriodicalId":40763,"journal":{"name":"Forensic Imaging","volume":"34 ","pages":"Article 200557"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266622562300026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate age-at-death (AAD) estimation is integral in establishing biological profiles in forensic anthropology, though standardized multivariate techniques are lacking. The current study developed and tested a three-dimensional convolutional neural network and three model variations with 1,224 de-identified cranial CT scans from the New Mexico Decedent Image Database. Each model required an input of an individual's cranial CT scan and outputted an AAD estimation. Model 3 was superior, successfully predicting AAD within 1.5 decades.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维卷积神经网络通过颅骨计算机断层扫描估计死者的死亡年龄
尽管缺乏标准化的多变量技术,但准确的死亡年龄(AAD)估计是建立法医人类学生物学图谱不可或缺的一部分。目前的研究开发并测试了一个三维卷积神经网络和三个模型变体,从新墨西哥州死者图像数据库中进行了1224次未识别的颅骨CT扫描。每个模型都需要输入个人的颅骨CT扫描,并输出AAD估计值。模型3是优越的,在1.5年内成功预测了AAD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Forensic Imaging
Forensic Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.20
自引率
27.30%
发文量
39
期刊最新文献
Closed iris, long exposure photography improves three-dimensional photogrammetric bone reconstructions Cranial surgical approaches in the 21st Century Identified Skeletal Collection Unveiling the diagnostic accuracy of PMCT: Detection of pneumonia considering postmortem changes and time intervals Exploring lightweight convolution neural networks for segmenting striation marks from firearm bullet images Age estimation based on sternebral fusion in a sample of Egyptian population using three-dimensional computed tomography scanning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1