Developing soft-computing regression model for predicting bearing capacity of eccentrically loaded footings on anisotropic clay

Kongtawan Sangjinda , Rungkhun Banyong , Saif Alzabeebee , Suraparb Keawsawasvong
{"title":"Developing soft-computing regression model for predicting bearing capacity of eccentrically loaded footings on anisotropic clay","authors":"Kongtawan Sangjinda ,&nbsp;Rungkhun Banyong ,&nbsp;Saif Alzabeebee ,&nbsp;Suraparb Keawsawasvong","doi":"10.1016/j.aiig.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this investigation, the bearing capacity solution of a strip footing in anisotropic clay under inclined and eccentric load is analyzed using the numerical simulation model. The lower and upper bound finite element limit analysis (FELA) approaches are utilized to establish precise modeling and derive the numerical outcomes of a strip footing's bearing capacity. All analyses use effective automated adaptive meshes with three iteration stages to enhance the accuracy of the outcomes. The parametric analysis is performed to examine the influence of four dimensionless parameters which are taken into account in this study, namely the anisotropic strength ratio, the dimensionless eccentricity, the load inclination angle, and the adhesion factor to the bearing capacity factor. Furthermore, a new model has been proposed to predict the bearing capacity factor for the calculation of the undrained bearing capacity for footings resting on an anisotropic clay using an advanced data-driven method (MOGA-EPR). The new model takes into account the anisotropy, eccentricity, and inclination of the applied load and could be used with confidence in routine designs of shallow foundations in undrained conditions with the consideration of the anisotropic strengths of clays.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"4 ","pages":"Pages 68-75"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544123000217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this investigation, the bearing capacity solution of a strip footing in anisotropic clay under inclined and eccentric load is analyzed using the numerical simulation model. The lower and upper bound finite element limit analysis (FELA) approaches are utilized to establish precise modeling and derive the numerical outcomes of a strip footing's bearing capacity. All analyses use effective automated adaptive meshes with three iteration stages to enhance the accuracy of the outcomes. The parametric analysis is performed to examine the influence of four dimensionless parameters which are taken into account in this study, namely the anisotropic strength ratio, the dimensionless eccentricity, the load inclination angle, and the adhesion factor to the bearing capacity factor. Furthermore, a new model has been proposed to predict the bearing capacity factor for the calculation of the undrained bearing capacity for footings resting on an anisotropic clay using an advanced data-driven method (MOGA-EPR). The new model takes into account the anisotropy, eccentricity, and inclination of the applied load and could be used with confidence in routine designs of shallow foundations in undrained conditions with the consideration of the anisotropic strengths of clays.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建立各向异性黏土偏心荷载基础承载力预测的软计算回归模型
本文采用数值模拟模型,分析了各向异性粘土条形基脚在倾斜和偏心荷载作用下的承载力解。利用有限元下限和上限分析(FELA)方法建立了条形基脚承载力的精确模型,并推导了其数值结果。所有分析都使用具有三个迭代阶段的有效自动自适应网格来提高结果的准确性。通过参数分析,考察了本研究中考虑的四个无量纲参数,即各向异性强度比、无量纲偏心率、荷载倾角和粘附因子对承载力因子的影响。此外,还提出了一个新的模型来预测承载力因子,用于使用先进的数据驱动方法(MOGA-EPR)计算各向异性粘土地基的不排水承载力。新模型考虑了所施加荷载的各向异性、偏心率和倾斜度,可在考虑粘土各向异性强度的不排水条件下用于浅基础的常规设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Convolutional sparse coding network for sparse seismic time-frequency representation Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield Pore size classification and prediction based on distribution of reservoir fluid volumes utilizing well logs and deep learning algorithm in a complex lithology Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows A 3D convolutional neural network model with multiple outputs for simultaneously estimating the reactive transport parameters of sandstone from its CT images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1