{"title":"A high-impedance fault detection scheme for DC aircrafts based on comb filter and second derivative of voltage","authors":"Navid Bayati , Mehdi Savaghebi","doi":"10.1016/j.geits.2023.100073","DOIUrl":null,"url":null,"abstract":"<div><p>Faults in a DC aircraft power system typically lead to serious equipment damage, which severely threatens the safety of the whole aircraft system. A fast and accurate real-time fault detection scheme is necessary for aircraft power systems to provide high reliability in the system. In this paper, a new fault detection device (FDD) is proposed based on the comb filter and second derivative of the system voltage to detect both low and high-impedance faults (HIFs) in a fast way. The proposed method utilizes the comb filter in the middle of the two first derivatives to detect both high and low-impedance faults within several microseconds. For demonstrating the efficiency, authenticity, and compatibility of the proposed method, digital time-domain simulations are carried out and verified by real-time simulations using an OPAL-RT simulator under different scenarios such as low- and high-impedance fault, overload, and motor starting to verify distinguishing between non-fault disturbances and faults. The results, which are compared with reported methods, prove the accuracy and speed of the proposed FDD in a DC aircraft.</p></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"2 2","pages":"Article 100073"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153723000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Faults in a DC aircraft power system typically lead to serious equipment damage, which severely threatens the safety of the whole aircraft system. A fast and accurate real-time fault detection scheme is necessary for aircraft power systems to provide high reliability in the system. In this paper, a new fault detection device (FDD) is proposed based on the comb filter and second derivative of the system voltage to detect both low and high-impedance faults (HIFs) in a fast way. The proposed method utilizes the comb filter in the middle of the two first derivatives to detect both high and low-impedance faults within several microseconds. For demonstrating the efficiency, authenticity, and compatibility of the proposed method, digital time-domain simulations are carried out and verified by real-time simulations using an OPAL-RT simulator under different scenarios such as low- and high-impedance fault, overload, and motor starting to verify distinguishing between non-fault disturbances and faults. The results, which are compared with reported methods, prove the accuracy and speed of the proposed FDD in a DC aircraft.