Brandon J. Richards, Mikhaela Slavin, Ashley N. Oliveira, Victoria C. Sanfrancesco, David A. Hood
{"title":"Mitochondrial protein import and UPRmt in skeletal muscle remodeling and adaptation","authors":"Brandon J. Richards, Mikhaela Slavin, Ashley N. Oliveira, Victoria C. Sanfrancesco, David A. Hood","doi":"10.1016/j.semcdb.2022.01.002","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>The biogenesis of mitochondria requires the coordinated expression of the nuclear and the mitochondrial genomes. However, the vast majority of gene products within the organelle are encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via the protein import machinery, which permit the entry of proteins to expand the mitochondrial network. Once inside, proteins undergo a maturation and folding process brought about by </span>enzymes comprising the </span>unfolded protein response (UPR</span><sup>mt</sup>). Protein import and UPR<sup>mt</sup><span> activity must be synchronized and matched with mtDNA-encoded subunit synthesis for proper assembly of electron transport chain<span> complexes to avoid proteotoxicity. This review discusses the functions of the import and UPR</span></span><sup>mt</sup> systems in mammalian skeletal muscle, as well as how exercise alters the equilibrium of these pathways in a time-dependent manner, leading to a new steady state of mitochondrial content resulting in enhanced oxidative capacity and improved muscle health.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084952122000040","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
The biogenesis of mitochondria requires the coordinated expression of the nuclear and the mitochondrial genomes. However, the vast majority of gene products within the organelle are encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via the protein import machinery, which permit the entry of proteins to expand the mitochondrial network. Once inside, proteins undergo a maturation and folding process brought about by enzymes comprising the unfolded protein response (UPRmt). Protein import and UPRmt activity must be synchronized and matched with mtDNA-encoded subunit synthesis for proper assembly of electron transport chain complexes to avoid proteotoxicity. This review discusses the functions of the import and UPRmt systems in mammalian skeletal muscle, as well as how exercise alters the equilibrium of these pathways in a time-dependent manner, leading to a new steady state of mitochondrial content resulting in enhanced oxidative capacity and improved muscle health.
期刊介绍:
Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications.
The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.