Fang-yu Tao , Dan Xie , Wan-Yue Diao , Chang Liu , Hai-Zhu Sun , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu
{"title":"Highly lithiophilic Ti3C2Tx-Mxene anchored on a flexible carbon foam scaffolds as the basis for a dendrite-free lithium metal anode","authors":"Fang-yu Tao , Dan Xie , Wan-Yue Diao , Chang Liu , Hai-Zhu Sun , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu","doi":"10.1016/S1872-5805(23)60739-5","DOIUrl":null,"url":null,"abstract":"<div><p>We report the fabrication of a lithiophilic Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXene-modified carbon foam (Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>-MX@CF) for the production of highly-stable LMBs that regulates Li nucleation behavior and reduces the volume change of a lithium metal anode (LMA). The 3D CF skeleton with a high specific surface area not only reduces the local current density to avoiding concentrated polarization, but also provides enough space to absorb the volume expansion during cycling. The excellent lithiophilicity of Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>-MX produced by its abundant functional groups reduces the Li nucleation overpotential, guides uniform Li deposition without the formation of Li dendrites, and maintains a stable SEI on the anode surface. Consequently, a Li infiltrated Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>-MX@CF symmetrical cell has an excellent cycling stability for more than 2 400 h with a low overpotential of 9 mV at a current density of 4 mA cm<sup>-2</sup> and has a capacity of 1 mA h cm<sup>-2</sup>. Furthermore, a Li- Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub>-MX@C||NCM111 full cell has a capacity of 129.6 mA h g<sup>-1</sup> even after 330 cycles at 1 C, demonstrating the advantage of this method in constructing stable LMAs.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"38 4","pages":"Pages 765-773"},"PeriodicalIF":5.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580523607395","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
We report the fabrication of a lithiophilic Ti3C2Tx MXene-modified carbon foam (Ti3C2Tx-MX@CF) for the production of highly-stable LMBs that regulates Li nucleation behavior and reduces the volume change of a lithium metal anode (LMA). The 3D CF skeleton with a high specific surface area not only reduces the local current density to avoiding concentrated polarization, but also provides enough space to absorb the volume expansion during cycling. The excellent lithiophilicity of Ti3C2Tx-MX produced by its abundant functional groups reduces the Li nucleation overpotential, guides uniform Li deposition without the formation of Li dendrites, and maintains a stable SEI on the anode surface. Consequently, a Li infiltrated Ti3C2Tx-MX@CF symmetrical cell has an excellent cycling stability for more than 2 400 h with a low overpotential of 9 mV at a current density of 4 mA cm-2 and has a capacity of 1 mA h cm-2. Furthermore, a Li- Ti3C2Tx-MX@C||NCM111 full cell has a capacity of 129.6 mA h g-1 even after 330 cycles at 1 C, demonstrating the advantage of this method in constructing stable LMAs.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.