Switchable metal and oxygen redox chemistry for highly-efficient oxygen evolution reaction

Pei Wang , Yongli Dong , Jun-Ye Zhang
{"title":"Switchable metal and oxygen redox chemistry for highly-efficient oxygen evolution reaction","authors":"Pei Wang ,&nbsp;Yongli Dong ,&nbsp;Jun-Ye Zhang","doi":"10.1016/j.asems.2022.100044","DOIUrl":null,"url":null,"abstract":"<div><p>The sluggish electron transfer process in the oxygen evolution reaction (OER) greatly restrict the large-scale application of water electrolysis for hydrogen generation. The modification of the electronic states around the Fermi level of the electrocatalysts is significant for accelerating the sluggish OER kinetics. So far, the OER kinetics solely involve either an adsorbate evolution mechanism (AEM), or a lattice oxygen oxidation mechanism (LOM). In a paper recently published in <em>Nature</em>, Xue and coworkers report an electron transfer mechanism that involves a switchable AEM and LOM in nickel-oxyhydroxide-based materials triggered by the light [1]. In contrast with previously reported electrocatalysts, the electrocatalyst proceeding through this mechanism shows a better OER activity. Hence, the reported light-triggered mechanism that couples AEM and LOM pioneers an innovative pathway towards the exploration of OER kinetics.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"2 1","pages":"Article 100044"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X22000449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sluggish electron transfer process in the oxygen evolution reaction (OER) greatly restrict the large-scale application of water electrolysis for hydrogen generation. The modification of the electronic states around the Fermi level of the electrocatalysts is significant for accelerating the sluggish OER kinetics. So far, the OER kinetics solely involve either an adsorbate evolution mechanism (AEM), or a lattice oxygen oxidation mechanism (LOM). In a paper recently published in Nature, Xue and coworkers report an electron transfer mechanism that involves a switchable AEM and LOM in nickel-oxyhydroxide-based materials triggered by the light [1]. In contrast with previously reported electrocatalysts, the electrocatalyst proceeding through this mechanism shows a better OER activity. Hence, the reported light-triggered mechanism that couples AEM and LOM pioneers an innovative pathway towards the exploration of OER kinetics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可切换金属和氧氧化还原化学用于高效析氧反应
析氧反应(OER)中缓慢的电子转移过程极大地限制了水电解制氢的大规模应用。电催化剂费米能级附近电子态的改变对于加速缓慢的OER动力学是重要的。到目前为止,OER动力学仅涉及吸附质演化机制(AEM)或晶格氧氧化机制(LOM)。在最近发表在《自然》杂志上的一篇论文中,薛及其同事报道了一种电子转移机制,该机制涉及由光触发的氢氧化镍基材料中的可切换AEM和LOM[1]。与先前报道的电催化剂相比,通过该机制进行的电催化剂显示出更好的OER活性。因此,所报道的耦合AEM和LOM的光触发机制为探索OER动力学开辟了一条创新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Redox-active sp2-c connected metal covalent organic frameworks for selective detection and reductive separation of uranium Porphyrin-based metal-organic frameworks for cancer theranostics Corrigendum to “Electrocatalytic CO2 and HCOOH interconversion on Pd-based catalysts” [Adv Sensor Energy Mater 1 (2022) 100007] Spherical nucleic acids for biomedical applications Ligand-free Cs2PdBr6 perovskite microcrystals with narrow bandgap and high photoelectrochemical performance in aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1