Spatio-temporal DeepKriging for interpolation and probabilistic forecasting

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-10-01 DOI:10.1016/j.spasta.2023.100773
Pratik Nag , Ying Sun , Brian J. Reich
{"title":"Spatio-temporal DeepKriging for interpolation and probabilistic forecasting","authors":"Pratik Nag ,&nbsp;Ying Sun ,&nbsp;Brian J. Reich","doi":"10.1016/j.spasta.2023.100773","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>Gaussian processes (GP) and Kriging are widely used in traditional spatio-temporal modelling and prediction. These techniques typically presuppose that the data are observed from a </span>stationary GP<span> with a parametric<span> covariance structure<span>. However, processes in real-world applications often exhibit non-Gaussianity and nonstationarity. Moreover, likelihood-based inference for GPs is computationally expensive and thus prohibitive for large datasets. In this paper, we propose a deep </span></span></span></span>neural network<span> (DNN) based two-stage model for spatio-temporal interpolation and forecasting. Interpolation is performed in the first step, which utilizes a dependent DNN with the embedding layer constructed with spatio-temporal basis functions. For the second stage, we use Long-Short Term Memory (LSTM) and convolutional LSTM to forecast future observations at a given location. We adopt the quantile-based loss function in the DNN to provide probabilistic forecasting. Compared to Kriging, the proposed method does not require specifying covariance functions or making </span></span>stationarity assumptions and is computationally efficient. Therefore, it is suitable for large-scale prediction of complex spatio-temporal processes. We apply our method to monthly </span><span><math><mrow><mi>P</mi><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn><mo>.</mo><mn>5</mn></mrow></msub></mrow></math></span> data at more than 200,000 space–time locations from January 1999 to December 2022 for fast imputation of missing values and forecasts with uncertainties.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Gaussian processes (GP) and Kriging are widely used in traditional spatio-temporal modelling and prediction. These techniques typically presuppose that the data are observed from a stationary GP with a parametric covariance structure. However, processes in real-world applications often exhibit non-Gaussianity and nonstationarity. Moreover, likelihood-based inference for GPs is computationally expensive and thus prohibitive for large datasets. In this paper, we propose a deep neural network (DNN) based two-stage model for spatio-temporal interpolation and forecasting. Interpolation is performed in the first step, which utilizes a dependent DNN with the embedding layer constructed with spatio-temporal basis functions. For the second stage, we use Long-Short Term Memory (LSTM) and convolutional LSTM to forecast future observations at a given location. We adopt the quantile-based loss function in the DNN to provide probabilistic forecasting. Compared to Kriging, the proposed method does not require specifying covariance functions or making stationarity assumptions and is computationally efficient. Therefore, it is suitable for large-scale prediction of complex spatio-temporal processes. We apply our method to monthly PM2.5 data at more than 200,000 space–time locations from January 1999 to December 2022 for fast imputation of missing values and forecasts with uncertainties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于插值和概率预测的时空深度克里格
高斯过程和克里格方法在传统的时空建模和预测中得到了广泛的应用。这些技术通常假设数据是从具有参数协方差结构的平稳GP中观察到的。然而,现实应用中的过程往往表现出非高斯性和非平稳性。此外,GP的基于似然的推理在计算上是昂贵的,因此对于大型数据集来说是禁止的。在本文中,我们提出了一种基于深度神经网络(DNN)的两阶段时空插值和预测模型。在第一步中执行插值,该步骤利用依赖DNN,嵌入层由时空基函数构建。对于第二阶段,我们使用长短期记忆(LSTM)和卷积LSTM来预测给定位置的未来观测结果。我们在DNN中采用了基于分位数的损失函数来提供概率预测。与克里格方法相比,该方法不需要指定协方差函数或进行平稳性假设,计算效率高。因此,它适用于复杂时空过程的大规模预测。我们将我们的方法应用于1999年1月至2022年12月20多万个时空位置的月度PM2.5数据,以快速估算缺失值和不确定性预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1