Efficiently Mining Colocation Patterns for Range Query

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-02-28 DOI:10.1016/j.bdr.2023.100369
Srikanth Baride , Anuj S. Saxena , Vikram Goyal
{"title":"Efficiently Mining Colocation Patterns for Range Query","authors":"Srikanth Baride ,&nbsp;Anuj S. Saxena ,&nbsp;Vikram Goyal","doi":"10.1016/j.bdr.2023.100369","DOIUrl":null,"url":null,"abstract":"<div><p>Colocation pattern mining finds a set of features whose instances frequently appear nearby in the same geographical space. Most of the existing algorithms for colocation patterns find nearby objects by a user-provided single-distance threshold. The value of the distance threshold is data specific and choosing a suitable distance for a user is not easy. In most real-world scenarios, it is rather meant to define spatial proximity by a distance range. It also provides flexibility to observe the change in the colocation patterns with distance and interprets the result better. Algorithms for mining colocations with a single distance threshold cannot be applied directly to the range of distances due to the computational overhead. We identify several structural properties of the collocation patterns and use them to propose an efficient single-pass colocation mining algorithm for distance range query, namely <span><math><mi>R</mi><mi>a</mi><mi>n</mi><mi>g</mi><mi>e</mi><mo>−</mo><mi>C</mi><mi>o</mi><mi>M</mi><mi>i</mi><mi>n</mi><mi>e</mi></math></span>. We compare the performance of the <span><math><mi>R</mi><mi>a</mi><mi>n</mi><mi>g</mi><mi>e</mi><mo>−</mo><mi>C</mi><mi>o</mi><mi>M</mi><mi>i</mi><mi>n</mi><mi>e</mi></math></span> with adapted versions of the famous Join-less colocation mining approach using both real-world and synthetic data sets and show that <span><math><mi>R</mi><mi>a</mi><mi>n</mi><mi>g</mi><mi>e</mi><mo>−</mo><mi>C</mi><mi>o</mi><mi>M</mi><mi>i</mi><mi>n</mi><mi>e</mi></math></span> outperforms the other algorithms.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579623000023","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Colocation pattern mining finds a set of features whose instances frequently appear nearby in the same geographical space. Most of the existing algorithms for colocation patterns find nearby objects by a user-provided single-distance threshold. The value of the distance threshold is data specific and choosing a suitable distance for a user is not easy. In most real-world scenarios, it is rather meant to define spatial proximity by a distance range. It also provides flexibility to observe the change in the colocation patterns with distance and interprets the result better. Algorithms for mining colocations with a single distance threshold cannot be applied directly to the range of distances due to the computational overhead. We identify several structural properties of the collocation patterns and use them to propose an efficient single-pass colocation mining algorithm for distance range query, namely RangeCoMine. We compare the performance of the RangeCoMine with adapted versions of the famous Join-less colocation mining approach using both real-world and synthetic data sets and show that RangeCoMine outperforms the other algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有效地挖掘范围查询的托管模式
并置模式挖掘发现了一组特征,这些特征的实例经常出现在同一地理空间的附近。大多数现有的主机代管模式算法都是通过用户提供的单个距离阈值来找到附近的对象。距离阈值的值是特定于数据的,并且为用户选择合适的距离并不容易。在大多数现实世界的场景中,它更倾向于通过距离范围来定义空间接近度。它还提供了观察主机代管模式随距离变化的灵活性,并更好地解释了结果。由于计算开销,用于挖掘具有单个距离阈值的主机代管的算法不能直接应用于距离范围。我们识别了配置模式的几个结构属性,并利用它们提出了一种有效的距离范围查询的单程配置挖掘算法,即range−CoMine。我们使用真实世界和合成数据集,将Range−CoMine的性能与著名的无连接主机代管挖掘方法的改编版本进行了比较,并表明Range−CoMine优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1