Estimating total organic carbon (TOC) of shale rocks from their mineral composition using stacking generalization approach of machine learning

IF 2.6 Q3 ENERGY & FUELS Upstream Oil and Gas Technology Pub Date : 2023-09-01 DOI:10.1016/j.upstre.2023.100089
Solomon Asante-Okyere , Solomon Adjei Marfo , Yao Yevenyo Ziggah
{"title":"Estimating total organic carbon (TOC) of shale rocks from their mineral composition using stacking generalization approach of machine learning","authors":"Solomon Asante-Okyere ,&nbsp;Solomon Adjei Marfo ,&nbsp;Yao Yevenyo Ziggah","doi":"10.1016/j.upstre.2023.100089","DOIUrl":null,"url":null,"abstract":"<div><p>A fundamental parameter in the exploration and development of unconventional shale reservoirs is total organic carbon (TOC). To achieve reliable TOC values, it requires a labour intensive and time-consuming laboratory experiment. On the other hand, models have been proposed using geophysical well logs as input variables with little attention paid to the contribution of mineralogical parameters in the evaluation of TOC. In this paper, a novel stacking machine learning technique is examined to generate accurate TOC predictions from the mineral content of the shale rock in the Sichuan Basin. The stacking machine learning model involves first-level models of multivariate adaptive regression spline (MARS), random forest (RF) and gradient boosted machine (GBM) known as base learners, while MARS was further used in the next step as the meta learner model. The research result indicated that the stacking TOC model outperformed the single applied models of MARS, GBM and RF. The proposed stacking TOC model generated estimates having the least error statistics of 0.29, 0.54 and 0.54 for MSE, RMSE and MAPE respectively while producing the highest correlation of 0.86 during the model validation stage. Therefore, stacking machine learning approach permits an improved estimation of TOC from the mineralogy of the rock.</p></div>","PeriodicalId":101264,"journal":{"name":"Upstream Oil and Gas Technology","volume":"11 ","pages":"Article 100089"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Upstream Oil and Gas Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266626042300004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

A fundamental parameter in the exploration and development of unconventional shale reservoirs is total organic carbon (TOC). To achieve reliable TOC values, it requires a labour intensive and time-consuming laboratory experiment. On the other hand, models have been proposed using geophysical well logs as input variables with little attention paid to the contribution of mineralogical parameters in the evaluation of TOC. In this paper, a novel stacking machine learning technique is examined to generate accurate TOC predictions from the mineral content of the shale rock in the Sichuan Basin. The stacking machine learning model involves first-level models of multivariate adaptive regression spline (MARS), random forest (RF) and gradient boosted machine (GBM) known as base learners, while MARS was further used in the next step as the meta learner model. The research result indicated that the stacking TOC model outperformed the single applied models of MARS, GBM and RF. The proposed stacking TOC model generated estimates having the least error statistics of 0.29, 0.54 and 0.54 for MSE, RMSE and MAPE respectively while producing the highest correlation of 0.86 during the model validation stage. Therefore, stacking machine learning approach permits an improved estimation of TOC from the mineralogy of the rock.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习的叠加泛化方法从矿物组成中估算页岩总有机碳(TOC)
非常规页岩油气藏勘探开发的一个基本参数是总有机碳(TOC)。为了获得可靠的TOC值,需要进行劳动密集型且耗时的实验室实验。另一方面,已经提出了使用地球物理测井作为输入变量的模型,而很少注意矿物学参数在TOC评估中的贡献。本文研究了一种新的堆叠机器学习技术,以根据四川盆地页岩的矿物含量生成准确的TOC预测。堆叠机器学习模型包括多变量自适应回归样条(MARS)、随机森林(RF)和梯度增强机器(GBM)的一级模型,这些模型被称为基础学习器,而MARS在下一步中被进一步用作元学习器模型。研究结果表明,叠加TOC模型优于MARS、GBM和RF的单一应用模型。所提出的堆叠TOC模型生成的MSE、RMSE和MAPE分别具有0.29、0.54和0.54的最小误差统计的估计,同时在模型验证阶段产生0.86的最高相关性。因此,堆叠机器学习方法允许从岩石的矿物学中改进TOC的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
期刊最新文献
Dynamics of pump jacks with theories and experiments Well perforating—More than reservoir connection A new method for predicting casing wear in highly deviated wells using mud logging data Experimental investigation of bypassed-oil recovery in tight reservoir rock using a two-step CO2 soaking strategy: Effects of fracture geometry A Review of Modern Approaches of Digitalization in Oil and Gas Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1