Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction

Shijie Li , Mingjie Cai , Yanping Liu , Chunchun Wang , Ruyu Yan , Xiaobo Chen
{"title":"Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction","authors":"Shijie Li ,&nbsp;Mingjie Cai ,&nbsp;Yanping Liu ,&nbsp;Chunchun Wang ,&nbsp;Ruyu Yan ,&nbsp;Xiaobo Chen","doi":"10.1016/j.apmate.2022.100073","DOIUrl":null,"url":null,"abstract":"<div><p>The development of distinguished photocatalysts with high photo-carrier disassociation and photo-redox power for efficient elimination of pollutants in water is of great significance but still a grand challenge. Herein, a novel Cd<sub>0.5</sub>Zn<sub>0.5</sub>S/Bi<sub>2</sub>WO<sub>6</sub> S-scheme heterojunction was built up by integrating Cd<sub>0.5</sub>Zn<sub>0.5</sub>S nanoparticles on Bi<sub>2</sub>WO<sub>6</sub> microspheres via a simple route. The S-scheme charge transfer mode substantially boosts the high-energetic electrons/holes spatial detachment and conservation on the Cd<sub>0.5</sub>Zn<sub>0.5</sub>S (reduction) and Bi<sub>2</sub>WO<sub>6</sub> (oxidation), respectively, as well as effectively suppresses the photo-corrosion of Cd<sub>0.5</sub>Zn<sub>0.5</sub>S, rendering Cd<sub>0.5</sub>Zn<sub>0.5</sub>S/Bi<sub>2</sub>WO<sub>6</sub> photocatalysts with superior redox ability. The optimal Cd<sub>0.5</sub>Zn<sub>0.5</sub>S/Bi<sub>2</sub>WO<sub>6</sub> heterojunction achieves exceptional visible-light-driven photocatalytic tetracycline degradation and Cr(VI) reduction efficiency, 3.2 (1.9)-time and 33.6 (1.6)-time stronger than that of neat Bi<sub>2</sub>WO<sub>6</sub> (Cd<sub>0.5</sub>Zn<sub>0.5</sub>S), while retaining the superior stability and reusability. Quenching test, mass spectrometry analysis, and toxicity assessment based on Quantitative Structure Activity Relationships. calculation unravel the prime active substances, intermediates, photo-degradation pathway, and intermediate eco-toxicity in photocatalytic process. This research not only offers a potential photocatalyst for aquatic environment protection but also promotes the exploration of novel and powerful chalcogenides-based S-scheme photocatalysts for environment protection.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"210","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X22000562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 210

Abstract

The development of distinguished photocatalysts with high photo-carrier disassociation and photo-redox power for efficient elimination of pollutants in water is of great significance but still a grand challenge. Herein, a novel Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction was built up by integrating Cd0.5Zn0.5S nanoparticles on Bi2WO6 microspheres via a simple route. The S-scheme charge transfer mode substantially boosts the high-energetic electrons/holes spatial detachment and conservation on the Cd0.5Zn0.5S (reduction) and Bi2WO6 (oxidation), respectively, as well as effectively suppresses the photo-corrosion of Cd0.5Zn0.5S, rendering Cd0.5Zn0.5S/Bi2WO6 photocatalysts with superior redox ability. The optimal Cd0.5Zn0.5S/Bi2WO6 heterojunction achieves exceptional visible-light-driven photocatalytic tetracycline degradation and Cr(VI) reduction efficiency, 3.2 (1.9)-time and 33.6 (1.6)-time stronger than that of neat Bi2WO6 (Cd0.5Zn0.5S), while retaining the superior stability and reusability. Quenching test, mass spectrometry analysis, and toxicity assessment based on Quantitative Structure Activity Relationships. calculation unravel the prime active substances, intermediates, photo-degradation pathway, and intermediate eco-toxicity in photocatalytic process. This research not only offers a potential photocatalyst for aquatic environment protection but also promotes the exploration of novel and powerful chalcogenides-based S-scheme photocatalysts for environment protection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建Cd0.5Zn0.5S/Bi2WO6 S-scheme异质结促进光催化抗生素氧化和Cr(VI)还原
开发具有高光载体解离性和光氧化还原能力的杰出光催化剂,以有效消除水中污染物,具有重要意义,但仍然是一个巨大的挑战。本文通过简单的方法将Cd0.5Zn0.5S纳米颗粒集成到Bi2WO6微球上,构建了一种新型的Cd0.5Zn.5S/Bi2WO6S-方案异质结。S方案电荷转移模式分别显著增强了Cd0.5Zn0.5S(还原)和Bi2WO6(氧化)上高能电子/空穴的空间分离和守恒,并有效抑制了Cd0.5Zn 0.5S的光腐蚀,使Cd0.5Zn0.5 S/Bi2WO5光催化剂具有优异的氧化还原能力。最佳的Cd0.5Zn0.5S/Bi2WO6异质结实现了卓越的可见光驱动的光催化四环素降解和Cr(VI)还原效率,比纯Bi2WO5(Cd0.5Zn.5S)高3.2(1.9)倍和33.6(1.6)倍,同时保持了优异的稳定性和可重复使用性。基于定量结构-活性关系的猝灭试验、质谱分析和毒性评估。计算揭示了光催化过程中的主要活性物质、中间体、光降解途径和中间体的生态毒性。这项研究不仅为水生环境保护提供了一种潜在的光催化剂,而且促进了新型、强大的硫族化合物基S型环保光催化剂的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries New lead-free chemistry for in-situ monitoring of advanced nuclear power plant A comprehensive review on catalysts for seawater electrolysis 3D printing of flexible piezoelectric composite with integrated sensing and actuation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1