{"title":"Degradation of Rhodamine B in the photocatalytic reactor containing TiO2 nanotube arrays coupled with nanobubbles","authors":"Zesen Lin, Changchang Dong, Wei Mu, Xiaojun Han","doi":"10.1016/j.asems.2023.100054","DOIUrl":null,"url":null,"abstract":"<div><p>Although photocatalytic technology is applied in water treatment, the challenge still exists due to its low photocatalytic performance. Herein, a photocatalytic reactor coupled with nanobubbles (NBs) is developed to degrade organic pollutants in wastewater. The reactor contains Ti mesh coated with TiO<sub>2</sub> nanotube arrays as a photocatalyst. The introduction of NBs in the reactor increases the dissolved oxygen content to enhance photocatalytic performance. The photocatalytic reactor exhibits outstanding photocatalytic performance, and the degradation ability of Rhodamine B is 95.39% after 2 h of irradiation treatment. The reactor also shows excellent photodegradation performance for other organic pollutants, such as methylene blue (74.23%), tetracycline (68.68%), and oxytetracycline hydrochloride (64.10%). Radical trapping experiments further prove that ·O<sub>2</sub><sup>−</sup>, h<sup>+</sup> and ·OH are the active species for the degradation of RhB in the photocatalytic system. Therefore, this work provides a feasible strategy to design a photocatalytic reactor coupling with nanobubbles technology for the photodegradation of organic pollutants in wastewater.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"2 2","pages":"Article 100054"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X23000092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Although photocatalytic technology is applied in water treatment, the challenge still exists due to its low photocatalytic performance. Herein, a photocatalytic reactor coupled with nanobubbles (NBs) is developed to degrade organic pollutants in wastewater. The reactor contains Ti mesh coated with TiO2 nanotube arrays as a photocatalyst. The introduction of NBs in the reactor increases the dissolved oxygen content to enhance photocatalytic performance. The photocatalytic reactor exhibits outstanding photocatalytic performance, and the degradation ability of Rhodamine B is 95.39% after 2 h of irradiation treatment. The reactor also shows excellent photodegradation performance for other organic pollutants, such as methylene blue (74.23%), tetracycline (68.68%), and oxytetracycline hydrochloride (64.10%). Radical trapping experiments further prove that ·O2−, h+ and ·OH are the active species for the degradation of RhB in the photocatalytic system. Therefore, this work provides a feasible strategy to design a photocatalytic reactor coupling with nanobubbles technology for the photodegradation of organic pollutants in wastewater.