Mechanistic insights into the role of nanoparticles towards the enhanced performance of thin-film nanocomposite membranes

IF 4.9 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Letters Pub Date : 2023-05-01 DOI:10.1016/j.memlet.2023.100046
Fengxia Yang , Fuyi Cui , Yi Di Yuan , Xin Yu , Dan Zhao
{"title":"Mechanistic insights into the role of nanoparticles towards the enhanced performance of thin-film nanocomposite membranes","authors":"Fengxia Yang ,&nbsp;Fuyi Cui ,&nbsp;Yi Di Yuan ,&nbsp;Xin Yu ,&nbsp;Dan Zhao","doi":"10.1016/j.memlet.2023.100046","DOIUrl":null,"url":null,"abstract":"<div><p>Thin-film nanocomposite (TFN) membranes are promising in improving water treatment due to their high permeability and selectivity. However, little is known about the mechanism by which nanoparticles enhance their performance. In this study, we prepared two series of TFN membranes containing ∼40 nm-sized zeolitic imidazolate framework (ZIF-8) nanoparticles, one with a hydrophobic porous form and the other with a nonporous amorphous form (aZIF-8). The TFN membranes containing 0.15 w/v% ZIF-8 exhibited a 100% increase in water permeance while maintaining a similar NaCl rejection (98.38%) compared to thin-film composite (TFC) membranes used in brackish water reverse osmosis (BWRO). In contrast, adding the same amount of aZIF-8 resulted in almost no water permeance enhancement. By comparing the physicochemical properties of the two materials and the two series of membranes, we found that the only difference was the presence or absence of internal hydrophobic pore structures. We proposed that the hydrophobic internal pores of nanoparticles served as extra water channels while preventing the passage of NaCl during BWRO.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"3 1","pages":"Article 100046"},"PeriodicalIF":4.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421223000107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Thin-film nanocomposite (TFN) membranes are promising in improving water treatment due to their high permeability and selectivity. However, little is known about the mechanism by which nanoparticles enhance their performance. In this study, we prepared two series of TFN membranes containing ∼40 nm-sized zeolitic imidazolate framework (ZIF-8) nanoparticles, one with a hydrophobic porous form and the other with a nonporous amorphous form (aZIF-8). The TFN membranes containing 0.15 w/v% ZIF-8 exhibited a 100% increase in water permeance while maintaining a similar NaCl rejection (98.38%) compared to thin-film composite (TFC) membranes used in brackish water reverse osmosis (BWRO). In contrast, adding the same amount of aZIF-8 resulted in almost no water permeance enhancement. By comparing the physicochemical properties of the two materials and the two series of membranes, we found that the only difference was the presence or absence of internal hydrophobic pore structures. We proposed that the hydrophobic internal pores of nanoparticles served as extra water channels while preventing the passage of NaCl during BWRO.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米颗粒对增强薄膜纳米复合膜性能的作用机理
薄膜纳米复合膜(TFN)具有较高的渗透性和选择性,在改善水处理方面具有广阔的应用前景。然而,人们对纳米颗粒增强其性能的机制知之甚少。在这项研究中,我们制备了两个系列的TFN膜,其中包含-40 nm大小的沸石咪唑骨架(ZIF-8)纳米颗粒,一个具有疏水性多孔形式,另一个具有无孔无定形形式(aZIF-8。与用于微咸水反渗透(BWRO)的薄膜复合材料(TFC)膜相比,含有0.15w/v%ZIF-8的TFN膜表现出100%的透水性增加,同时保持类似的NaCl截留率(98.38%)。相反,添加相同量的aZIF-8几乎没有导致透水性增强。通过比较两种材料和两系列膜的物理化学性质,我们发现唯一的区别是内部疏水孔结构的存在或不存在。我们提出,在BWRO过程中,纳米颗粒的疏水性内部孔隙充当额外的水通道,同时防止NaCl通过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
Automated membrane characterization: In-situ monitoring of the permeate and retentate solutions using a 3D printed permeate probe device Enhanced phosphate anion flux through single-ion, reverse-selective mixed-matrix cation exchange membrane Thermodynamic efficiency of membrane separation of dilute gas: Estimation for CO2 direct air capture application The solution-diffusion model: “Rumors of my death have been exaggerated” Incorporation of polyzwitterions in superabsorbent network membranes for enhanced saltwater absorption and retention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1