Statistical considerations of using the 1-ft2 quadrat for monitoring peak standing crop and residual dry matter on California annual rangelands

Royce Larsen , Joseph G. Robins , Kevin B. Jensen , Matthew Shapero , Karl Striby , LynneDee Althouse , Melvin George , Marc Horney , Devii Rao , Alexander Hernandez , Randy Dahlgren , James Bartolome
{"title":"Statistical considerations of using the 1-ft2 quadrat for monitoring peak standing crop and residual dry matter on California annual rangelands","authors":"Royce Larsen ,&nbsp;Joseph G. Robins ,&nbsp;Kevin B. Jensen ,&nbsp;Matthew Shapero ,&nbsp;Karl Striby ,&nbsp;LynneDee Althouse ,&nbsp;Melvin George ,&nbsp;Marc Horney ,&nbsp;Devii Rao ,&nbsp;Alexander Hernandez ,&nbsp;Randy Dahlgren ,&nbsp;James Bartolome","doi":"10.1016/j.rala.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><p></p><ul><li><span>•</span><span><p>Peak standing crop (PSC) and residual dry matter (RDM) are the primary measures of production and grazing intensity on California's annual rangelands.</p></span></li><li><span>•</span><span><p>One of the most common methods of monitoring forage metrics is to clip 1-ft<sup>2</sup> quadrats. The USDA Forest Service, Bureau of Land Management, universities, and other land managers have been using this methodology since the 1930s.</p></span></li><li><span>•</span><span><p>We used best linear unbiased predictors (BLUEs) to determine 95% confidence intervals for PSC and RDM. For both PSC and RDM, as the number of samples taken increased from 1 to 10, the predictive ability also significantly increased. We found no evidence of increased predictive power past 10 samples.</p></span></li></ul></div>","PeriodicalId":101057,"journal":{"name":"Rangelands","volume":"45 5","pages":"Pages 102-108"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rangelands","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0190052823000263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

  • Peak standing crop (PSC) and residual dry matter (RDM) are the primary measures of production and grazing intensity on California's annual rangelands.

  • One of the most common methods of monitoring forage metrics is to clip 1-ft2 quadrats. The USDA Forest Service, Bureau of Land Management, universities, and other land managers have been using this methodology since the 1930s.

  • We used best linear unbiased predictors (BLUEs) to determine 95% confidence intervals for PSC and RDM. For both PSC and RDM, as the number of samples taken increased from 1 to 10, the predictive ability also significantly increased. We found no evidence of increased predictive power past 10 samples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用1英尺2样方监测加州一年生牧场的最高直立作物和剩余干物质的统计考虑
•峰值站立作物(PSC)和残留干物质(RDM)是衡量加州年度牧场生产和放牧强度的主要指标。•监测饲料指标的最常见方法之一是修剪1平方英尺的象限。自20世纪30年代以来,美国农业部林业局、土地管理局、大学和其他土地管理者一直在使用这种方法。•我们使用最佳线性无偏预测因子(BLUE)来确定PSC和RDM的95%置信区间。对于PSC和RDM,随着采样数量从1增加到10,预测能力也显著提高。我们没有发现超过10个样本的预测能力增加的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Rangeland management practices in Somaliland: lessons learned from the Aroori Grazing Reserve Rates of change in invasive annual grass cover to inform management actions in sagebrush ecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1