{"title":"Dynamic behavior of liquefiable ground reinforced by in-situ cement-mixing lattice wall","authors":"Kenji Watanabe , Tengfei Wang , Masahiro Ishikawa , Masatoshi Iijima , Shingo Mihira","doi":"10.1016/j.sandf.2023.101352","DOIUrl":null,"url":null,"abstract":"<div><p>In-situ cement-mixing lattice-shaped ground improvement (lattice wall) is one of the effective countermeasures for liquefiable grounds. However, its high cost hinders its wide applicability. This is mainly due to the conventional concept of seismic designs which do not allow any liquefaction of the ground against earthquakes.</p><p>The recent seismic design code was revised to comply with the concept of performance-based design, which allows some displacement or slight damage to structures, such as pile foundations, during major earthquakes. In order to apply lattice walls to meet the concept of the recent design standard, especially against major earthquakes, it is necessary to establish a rational design method that considers the quantitative effect of lattice walls.</p><p>In this study, therefore, a series of 1-g field shaking table tests was performed with a lattice wall, and the effect of the wall was carefully evaluated through the quantitative measurement of the stress–strain relationship of the liquefiable ground inside the lattice wall and in the free ground (without a lattice wall). It became possible to quantitatively examine the effect of the wall by installing small accelerometers into the ground with precision.</p><p>Two major positive effects of the lattice wall were observed through the series of shaking table tests. One was the delay in the onset of liquefaction by the restriction of shear strain, and the other was the recovery of the shear stiffness of the ground even after the onset of liquefaction. These experimental results indicate that lattice walls can be applied as an effective liquefaction countermeasure method, especially when the performance-based design is applied to address large earthquakes.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080623000811","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In-situ cement-mixing lattice-shaped ground improvement (lattice wall) is one of the effective countermeasures for liquefiable grounds. However, its high cost hinders its wide applicability. This is mainly due to the conventional concept of seismic designs which do not allow any liquefaction of the ground against earthquakes.
The recent seismic design code was revised to comply with the concept of performance-based design, which allows some displacement or slight damage to structures, such as pile foundations, during major earthquakes. In order to apply lattice walls to meet the concept of the recent design standard, especially against major earthquakes, it is necessary to establish a rational design method that considers the quantitative effect of lattice walls.
In this study, therefore, a series of 1-g field shaking table tests was performed with a lattice wall, and the effect of the wall was carefully evaluated through the quantitative measurement of the stress–strain relationship of the liquefiable ground inside the lattice wall and in the free ground (without a lattice wall). It became possible to quantitatively examine the effect of the wall by installing small accelerometers into the ground with precision.
Two major positive effects of the lattice wall were observed through the series of shaking table tests. One was the delay in the onset of liquefaction by the restriction of shear strain, and the other was the recovery of the shear stiffness of the ground even after the onset of liquefaction. These experimental results indicate that lattice walls can be applied as an effective liquefaction countermeasure method, especially when the performance-based design is applied to address large earthquakes.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.