Hai-Tao Jia , Bo-Yang Zhang , Chao Huang , Wen-Han Li , Wen-Bo Xu , Yu-Feng Bi , Li Ren
{"title":"Application of graph neural network and feature information enhancement in relation inference of sparse knowledge graph","authors":"Hai-Tao Jia , Bo-Yang Zhang , Chao Huang , Wen-Han Li , Wen-Bo Xu , Yu-Feng Bi , Li Ren","doi":"10.1016/j.jnlest.2023.100194","DOIUrl":null,"url":null,"abstract":"<div><p>At present, knowledge embedding methods are widely used in the field of knowledge graph (KG) reasoning, and have been successfully applied to those with large entities and relationships. However, in research and production environments, there are a large number of KGs with a small number of entities and relations, which are called sparse KGs. Limited by the performance of knowledge extraction methods or some other reasons (some common-sense information does not appear in the natural corpus), the relation between entities is often incomplete. To solve this problem, a method of the graph neural network and information enhancement is proposed. The improved method increases the mean reciprocal rank (MRR) and Hit@3 by 1.6% and 1.7%, respectively, when the sparsity of the FB15K-237 dataset is 10%. When the sparsity is 50%, the evaluation indexes MRR and Hit@10 are increased by 0.8% and 1.8%, respectively.</p></div>","PeriodicalId":53467,"journal":{"name":"Journal of Electronic Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Science and Technology","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674862X23000125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
At present, knowledge embedding methods are widely used in the field of knowledge graph (KG) reasoning, and have been successfully applied to those with large entities and relationships. However, in research and production environments, there are a large number of KGs with a small number of entities and relations, which are called sparse KGs. Limited by the performance of knowledge extraction methods or some other reasons (some common-sense information does not appear in the natural corpus), the relation between entities is often incomplete. To solve this problem, a method of the graph neural network and information enhancement is proposed. The improved method increases the mean reciprocal rank (MRR) and Hit@3 by 1.6% and 1.7%, respectively, when the sparsity of the FB15K-237 dataset is 10%. When the sparsity is 50%, the evaluation indexes MRR and Hit@10 are increased by 0.8% and 1.8%, respectively.
期刊介绍:
JEST (International) covers the state-of-the-art achievements in electronic science and technology, including the most highlight areas: ¨ Communication Technology ¨ Computer Science and Information Technology ¨ Information and Network Security ¨ Bioelectronics and Biomedicine ¨ Neural Networks and Intelligent Systems ¨ Electronic Systems and Array Processing ¨ Optoelectronic and Photonic Technologies ¨ Electronic Materials and Devices ¨ Sensing and Measurement ¨ Signal Processing and Image Processing JEST (International) is dedicated to building an open, high-level academic journal supported by researchers, professionals, and academicians. The Journal has been fully indexed by Ei INSPEC and has published, with great honor, the contributions from more than 20 countries and regions in the world.