Application of graph neural network and feature information enhancement in relation inference of sparse knowledge graph

Hai-Tao Jia , Bo-Yang Zhang , Chao Huang , Wen-Han Li , Wen-Bo Xu , Yu-Feng Bi , Li Ren
{"title":"Application of graph neural network and feature information enhancement in relation inference of sparse knowledge graph","authors":"Hai-Tao Jia ,&nbsp;Bo-Yang Zhang ,&nbsp;Chao Huang ,&nbsp;Wen-Han Li ,&nbsp;Wen-Bo Xu ,&nbsp;Yu-Feng Bi ,&nbsp;Li Ren","doi":"10.1016/j.jnlest.2023.100194","DOIUrl":null,"url":null,"abstract":"<div><p>At present, knowledge embedding methods are widely used in the field of knowledge graph (KG) reasoning, and have been successfully applied to those with large entities and relationships. However, in research and production environments, there are a large number of KGs with a small number of entities and relations, which are called sparse KGs. Limited by the performance of knowledge extraction methods or some other reasons (some common-sense information does not appear in the natural corpus), the relation between entities is often incomplete. To solve this problem, a method of the graph neural network and information enhancement is proposed. The improved method increases the mean reciprocal rank (MRR) and Hit@3 by 1.6% and 1.7%, respectively, when the sparsity of the FB15K-237 dataset is 10%. When the sparsity is 50%, the evaluation indexes MRR and Hit@10 are increased by 0.8% and 1.8%, respectively.</p></div>","PeriodicalId":53467,"journal":{"name":"Journal of Electronic Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Science and Technology","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674862X23000125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

At present, knowledge embedding methods are widely used in the field of knowledge graph (KG) reasoning, and have been successfully applied to those with large entities and relationships. However, in research and production environments, there are a large number of KGs with a small number of entities and relations, which are called sparse KGs. Limited by the performance of knowledge extraction methods or some other reasons (some common-sense information does not appear in the natural corpus), the relation between entities is often incomplete. To solve this problem, a method of the graph neural network and information enhancement is proposed. The improved method increases the mean reciprocal rank (MRR) and Hit@3 by 1.6% and 1.7%, respectively, when the sparsity of the FB15K-237 dataset is 10%. When the sparsity is 50%, the evaluation indexes MRR and Hit@10 are increased by 0.8% and 1.8%, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图神经网络与特征信息增强在稀疏知识图关系推理中的应用
目前,知识嵌入方法在知识图推理领域得到了广泛的应用,并已成功应用于具有大型实体和关系的推理。然而,在研究和生产环境中,存在大量的KGs,而实体和关系很少,这被称为稀疏KGs。受限于知识提取方法的性能或其他一些原因(一些常识性信息没有出现在自然语料库中),实体之间的关系往往是不完整的。为了解决这个问题,提出了一种图神经网络和信息增强的方法。改进的方法提高了平均倒数排名(MRR)Hit@3当FB15K-237数据集的稀疏性为10%时,分别降低了1.6%和1.7%。当稀疏性为50%时,评价指标MRR和Hit@10分别提高0.8%和1.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electronic Science and Technology
Journal of Electronic Science and Technology Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
0.00%
发文量
1362
审稿时长
99 days
期刊介绍: JEST (International) covers the state-of-the-art achievements in electronic science and technology, including the most highlight areas: ¨ Communication Technology ¨ Computer Science and Information Technology ¨ Information and Network Security ¨ Bioelectronics and Biomedicine ¨ Neural Networks and Intelligent Systems ¨ Electronic Systems and Array Processing ¨ Optoelectronic and Photonic Technologies ¨ Electronic Materials and Devices ¨ Sensing and Measurement ¨ Signal Processing and Image Processing JEST (International) is dedicated to building an open, high-level academic journal supported by researchers, professionals, and academicians. The Journal has been fully indexed by Ei INSPEC and has published, with great honor, the contributions from more than 20 countries and regions in the world.
期刊最新文献
Source localization based on field signatures: Laboratory ultrasonic validation Machine learning model based on non-convex penalized huberized-SVM Iterative physical optics method based on efficient occlusion judgment with bounding volume hierarchy technology A multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction Big data challenge for monitoring quality in higher education institutions using business intelligence dashboards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1