Grazing by collembola controls fungal induced soil aggregation

IF 1.9 3区 环境科学与生态学 Q3 ECOLOGY Fungal Ecology Pub Date : 2023-10-01 DOI:10.1016/j.funeco.2023.101284
S. Emilia Hannula , Renske Jongen , Elly Morriën
{"title":"Grazing by collembola controls fungal induced soil aggregation","authors":"S. Emilia Hannula ,&nbsp;Renske Jongen ,&nbsp;Elly Morriën","doi":"10.1016/j.funeco.2023.101284","DOIUrl":null,"url":null,"abstract":"<div><p>Fungi affect soil aggregation and hence soil structure. Soil aggregation by saprotrophic fungi has been linked to various fungal traits but not tested during interactions with other organisms such as grazing soil fauna. Here we investigated how fungal identity and traits such as mycelial extension rate and biomass production affect aggregation across 49 fungal species isolated from sandy soils with different land uses. We tested each fungus and its effect on aggregation in the presence and absence of a grazer (<em>Folsomia candida</em>). We show that fungal species vary widely in their ability to aggregate soil, that the ability to aggregate soil was not phylogenetically conserved and the best trait predictor for aggregation was mycelial extension rate. Moreover, we show that the interactions between fungi and collembola affect the ability of fungi to aggregate soils. We conclude that identity of fungal species and their interaction with grazers affects soil aggregation and thus soil structure.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"65 ","pages":"Article 101284"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504823000612","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fungi affect soil aggregation and hence soil structure. Soil aggregation by saprotrophic fungi has been linked to various fungal traits but not tested during interactions with other organisms such as grazing soil fauna. Here we investigated how fungal identity and traits such as mycelial extension rate and biomass production affect aggregation across 49 fungal species isolated from sandy soils with different land uses. We tested each fungus and its effect on aggregation in the presence and absence of a grazer (Folsomia candida). We show that fungal species vary widely in their ability to aggregate soil, that the ability to aggregate soil was not phylogenetically conserved and the best trait predictor for aggregation was mycelial extension rate. Moreover, we show that the interactions between fungi and collembola affect the ability of fungi to aggregate soils. We conclude that identity of fungal species and their interaction with grazers affects soil aggregation and thus soil structure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线虫放牧控制真菌引起的土壤团聚
真菌影响土壤聚集,从而影响土壤结构。腐生真菌的土壤聚集与各种真菌特性有关,但在与其他生物(如放牧土壤动物)的相互作用过程中没有进行测试。在这里,我们研究了从不同土地利用的沙质土壤中分离出的49种真菌的真菌特性和特征,如菌丝延伸率和生物量产量,如何影响其聚集。我们测试了每种真菌及其在有无食草动物(念珠菌Folsomia candida)的情况下对聚集的影响。我们发现,真菌种类在聚集土壤的能力上差异很大,聚集土壤的功能在系统发育上并不保守,聚集的最佳性状预测因子是菌丝体延伸率。此外,我们发现真菌和弹尾虫之间的相互作用影响真菌聚集土壤的能力。我们得出的结论是,真菌物种的身份及其与食草动物的相互作用会影响土壤聚集,从而影响土壤结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fungal Ecology
Fungal Ecology 环境科学-生态学
CiteScore
5.80
自引率
3.40%
发文量
51
审稿时长
3 months
期刊介绍: Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.
期刊最新文献
Strong climatic effects on ectomycorrhizal fungal communities at seedling establishment stage in ice-age relict forests Secondary metabolites and their impact on symbiotic interactions in the ambrosia fungus Geosmithia eupagioceri Fungi in treeline ecotones – Halting or causing abrupt ecosystem change? Editorial Board Volatilome of Australian Ips grandicollis-associated ophiostomatoid fungi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1