{"title":"Branch-and-cut solution approach for multilevel mixed integer linear programming problems","authors":"Ashenafi Awraris , Berhanu Guta Wordofa , Semu Mitiku Kassa","doi":"10.1016/j.ejco.2023.100076","DOIUrl":null,"url":null,"abstract":"<div><p>A multilevel programming problem is an optimization problem that involves multiple decision makers, whose decisions are made in a sequential (or hierarchical) order. If all objective functions and constraints are linear and some decision variables in any level are restricted to take on integral or discrete values, then the problem is called a multilevel mixed integer linear programming problem (ML-MILP). Such problems are known to have disconnected feasible regions (called inducible regions), making the task of constructing an optimal solution challenging. Therefore, existing solution approaches are limited to some strict assumptions in the model formulations and lack universality. This paper presents a branch-and-cut (B&C) algorithm for the global solution of such problems with any finite number of hierarchical levels, and containing both continuous and discrete variables at each level of the decision-making hierarchy. Finite convergence of the proposed algorithm to a global solution is established. Numerical examples are used to illustrate the detailed procedure and to demonstrate the performance of the algorithm. Additionally, the computational performance of the proposed method is studied by comparing it with existing method through some selected numerical examples.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"11 ","pages":"Article 100076"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440623000205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A multilevel programming problem is an optimization problem that involves multiple decision makers, whose decisions are made in a sequential (or hierarchical) order. If all objective functions and constraints are linear and some decision variables in any level are restricted to take on integral or discrete values, then the problem is called a multilevel mixed integer linear programming problem (ML-MILP). Such problems are known to have disconnected feasible regions (called inducible regions), making the task of constructing an optimal solution challenging. Therefore, existing solution approaches are limited to some strict assumptions in the model formulations and lack universality. This paper presents a branch-and-cut (B&C) algorithm for the global solution of such problems with any finite number of hierarchical levels, and containing both continuous and discrete variables at each level of the decision-making hierarchy. Finite convergence of the proposed algorithm to a global solution is established. Numerical examples are used to illustrate the detailed procedure and to demonstrate the performance of the algorithm. Additionally, the computational performance of the proposed method is studied by comparing it with existing method through some selected numerical examples.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.