Mycorrhizal driven positive feedbacks and forest resilience to reduced rainfall

IF 1.9 3区 环境科学与生态学 Q3 ECOLOGY Fungal Ecology Pub Date : 2023-10-01 DOI:10.1016/j.funeco.2023.101280
Cassandra Allsup, Sam Marquardt, Richard Lankau
{"title":"Mycorrhizal driven positive feedbacks and forest resilience to reduced rainfall","authors":"Cassandra Allsup,&nbsp;Sam Marquardt,&nbsp;Richard Lankau","doi":"10.1016/j.funeco.2023.101280","DOIUrl":null,"url":null,"abstract":"<div><p>Forests can experience negative feedbacks in the growth of tree populations but positive feedbacks within the two dominant mycorrhizal types of trees: ectomycorrhizal (EM) and arbuscular mycorrhizal (AM). Positive feedbacks within mycorrhizal types may provide communities with resistance to climate change. We tested whether each mycorrhizal type led to positive feedbacks on seedling survival, while statistically controlling for the effect of congeneric trees in ambient versus rainfall reduced conditions. We explored two potential drivers: the variation in soil fungal community structure and soil chemistry. Seedlings benefited from growing in stands dominated by their own mycorrhizal type, and simultaneously, tree seedlings performed worse in the presence of adult trees of their own genus, but only in rainfall reduced conditions. We found that the composition of the EM fungal community differed between plots dominated by EM versus AM trees. These results indicated that mycorrhizal types may create positive feedbacks in dry conditions that should be considered when predicting future states.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"65 ","pages":"Article 101280"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504823000570","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Forests can experience negative feedbacks in the growth of tree populations but positive feedbacks within the two dominant mycorrhizal types of trees: ectomycorrhizal (EM) and arbuscular mycorrhizal (AM). Positive feedbacks within mycorrhizal types may provide communities with resistance to climate change. We tested whether each mycorrhizal type led to positive feedbacks on seedling survival, while statistically controlling for the effect of congeneric trees in ambient versus rainfall reduced conditions. We explored two potential drivers: the variation in soil fungal community structure and soil chemistry. Seedlings benefited from growing in stands dominated by their own mycorrhizal type, and simultaneously, tree seedlings performed worse in the presence of adult trees of their own genus, but only in rainfall reduced conditions. We found that the composition of the EM fungal community differed between plots dominated by EM versus AM trees. These results indicated that mycorrhizal types may create positive feedbacks in dry conditions that should be considered when predicting future states.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
菌根驱动的正反馈和森林对降雨减少的恢复力
森林在树木种群的生长过程中会经历负反馈,但在两种主要的菌根类型的树木中会经历正反馈:外生菌根(EM)和丛枝菌根(AM)。菌根类型内的正反馈可能为群落提供对气候变化的抵抗力。我们测试了每种菌根类型是否对幼苗存活产生正反馈,同时统计控制了同类树木在环境和降雨减少条件下的影响。我们探索了两个潜在的驱动因素:土壤真菌群落结构的变化和土壤化学。幼苗生长在以自身菌根类型为主的林分中受益,同时,在有本属成年树的情况下,树苗的表现更差,但仅在降雨量减少的条件下。我们发现EM真菌群落的组成在EM树和AM树为主的地块之间存在差异。这些结果表明,菌根类型可能在干旱条件下产生正反馈,在预测未来状态时应予以考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fungal Ecology
Fungal Ecology 环境科学-生态学
CiteScore
5.80
自引率
3.40%
发文量
51
审稿时长
3 months
期刊介绍: Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.
期刊最新文献
Strong climatic effects on ectomycorrhizal fungal communities at seedling establishment stage in ice-age relict forests Secondary metabolites and their impact on symbiotic interactions in the ambrosia fungus Geosmithia eupagioceri Fungi in treeline ecotones – Halting or causing abrupt ecosystem change? Editorial Board Volatilome of Australian Ips grandicollis-associated ophiostomatoid fungi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1