Huijue Kelly Duan , Miklos A. Vasarhelyi , Mauricio Codesso , Zamil Alzamil
{"title":"Enhancing the government accounting information systems using social media information: An application of text mining and machine learning","authors":"Huijue Kelly Duan , Miklos A. Vasarhelyi , Mauricio Codesso , Zamil Alzamil","doi":"10.1016/j.accinf.2022.100600","DOIUrl":null,"url":null,"abstract":"<div><p>This study demonstrates a way of bringing an innovative data source, social media information, to the government accounting information systems to support accountability to stakeholders and managerial decision-making. Future accounting and auditing processes will heavily rely on multiple forms of exogenous data. As an example of the techniques that could be used to generate this needed information, the study applies text mining techniques and machine learning algorithms to Twitter data. The information is developed as an alternative performance measure for NYC street cleanliness. It utilizes Naïve Bayes, Random Forest, and XGBoost to classify the tweets, illustrates how to use the sampling method to solve the imbalanced class distribution issue, and uses VADER sentiment to derive the public opinion about street cleanliness. This study also extends the research to another social media platform, Facebook, and finds that the incremental value is different between the two social media platforms. This data can then be linked to government accounting information systems to evaluate costs and provide a better understanding of the efficiency and effectiveness of operations.</p></div>","PeriodicalId":47170,"journal":{"name":"International Journal of Accounting Information Systems","volume":"48 ","pages":"Article 100600"},"PeriodicalIF":4.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Accounting Information Systems","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1467089522000525","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 6
Abstract
This study demonstrates a way of bringing an innovative data source, social media information, to the government accounting information systems to support accountability to stakeholders and managerial decision-making. Future accounting and auditing processes will heavily rely on multiple forms of exogenous data. As an example of the techniques that could be used to generate this needed information, the study applies text mining techniques and machine learning algorithms to Twitter data. The information is developed as an alternative performance measure for NYC street cleanliness. It utilizes Naïve Bayes, Random Forest, and XGBoost to classify the tweets, illustrates how to use the sampling method to solve the imbalanced class distribution issue, and uses VADER sentiment to derive the public opinion about street cleanliness. This study also extends the research to another social media platform, Facebook, and finds that the incremental value is different between the two social media platforms. This data can then be linked to government accounting information systems to evaluate costs and provide a better understanding of the efficiency and effectiveness of operations.
期刊介绍:
The International Journal of Accounting Information Systems will publish thoughtful, well developed articles that examine the rapidly evolving relationship between accounting and information technology. Articles may range from empirical to analytical, from practice-based to the development of new techniques, but must be related to problems facing the integration of accounting and information technology. The journal will address (but will not limit itself to) the following specific issues: control and auditability of information systems; management of information technology; artificial intelligence research in accounting; development issues in accounting and information systems; human factors issues related to information technology; development of theories related to information technology; methodological issues in information technology research; information systems validation; human–computer interaction research in accounting information systems. The journal welcomes and encourages articles from both practitioners and academicians.