Gaochao Lin , Wei Liu , Jixiang Zhao , Pengchao Fu
{"title":"Experimental investigation into effects of lignin on sandy loess","authors":"Gaochao Lin , Wei Liu , Jixiang Zhao , Pengchao Fu","doi":"10.1016/j.sandf.2023.101359","DOIUrl":null,"url":null,"abstract":"<div><p>Promoted by the international Helin Airplane project where sandy loess is widely distributed, this study investigates the feasibility of improving the mechanical properties of sandy loess by using lignin, an environmentally friendly material. Considering the climatic conditions in the distribution area of sandy loess, such as strong evaporation and large diurnal temperature difference, extensive experiments including curing test, wet-dry cycle test, freeze–thaw cycle test, triaxial test, XRD test and SEM test are conducted to determine the strengthening effect of lignin on sandy loess. Test results show that 21 days are enough for lignin-modified sandy loess to complete curing and obtain maximum compressive strength, which increases with the increase of lignin content. Lignin has insignificant effect on the resistance of sandy loess to wet-dry cycles, but it can significantly improve the resistance to freeze–thaw cycles. Lignin causes significant alterations on the stress–strain relationship and mechanical response of sandy loess by mainly changing the cohesion while maintaining the frictional angle unchanged. SEM results show that lignin gradually plays the role of cementation, bonding, and fiber reinforcement with increasing content, and it mainly affects fine-grained soils while it has less effect on large particles. Good agreement between different experiments is obtained.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080623000884","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Promoted by the international Helin Airplane project where sandy loess is widely distributed, this study investigates the feasibility of improving the mechanical properties of sandy loess by using lignin, an environmentally friendly material. Considering the climatic conditions in the distribution area of sandy loess, such as strong evaporation and large diurnal temperature difference, extensive experiments including curing test, wet-dry cycle test, freeze–thaw cycle test, triaxial test, XRD test and SEM test are conducted to determine the strengthening effect of lignin on sandy loess. Test results show that 21 days are enough for lignin-modified sandy loess to complete curing and obtain maximum compressive strength, which increases with the increase of lignin content. Lignin has insignificant effect on the resistance of sandy loess to wet-dry cycles, but it can significantly improve the resistance to freeze–thaw cycles. Lignin causes significant alterations on the stress–strain relationship and mechanical response of sandy loess by mainly changing the cohesion while maintaining the frictional angle unchanged. SEM results show that lignin gradually plays the role of cementation, bonding, and fiber reinforcement with increasing content, and it mainly affects fine-grained soils while it has less effect on large particles. Good agreement between different experiments is obtained.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.