Optimum supervised classification algorithm identification by investigating PlanetScope and Skysat multispectral satellite data of Covid lockdown

Amit Kumar Shakya , Ayushman Ramola , Surinder Singh , Anurag Vidyarthi
{"title":"Optimum supervised classification algorithm identification by investigating PlanetScope and Skysat multispectral satellite data of Covid lockdown","authors":"Amit Kumar Shakya ,&nbsp;Ayushman Ramola ,&nbsp;Surinder Singh ,&nbsp;Anurag Vidyarthi","doi":"10.1016/j.geogeo.2022.100163","DOIUrl":null,"url":null,"abstract":"<div><p>This research identifies the optimum supervised classification algorithm based on modeling Covid 19 lockdown situations all around the World. The deadly Covid 19 viruses suddenly stopped the fast-moving world and all the commercial and noncommercial activities were stalled for an uncertain period during 2020-2021. In this work, object-based image classification approaches have been used to compare pre-Covid and post-Covid (at the time lockdown) images of the study area. These study areas are Washington DC, USA, Sao Paulo, Brazil, Cairo, Egypt, Afghanistan/Iran border, and Beijing, China. All the study areas possess different geographical conditions but have a similar situation of Covid 19 lockdowns. Six supervised image classification techniques are known as Parallelepiped classification (<span><math><mrow><mi>P</mi><mi>P</mi><mi>C</mi></mrow></math></span>), Minimum distance classification (<span><math><mrow><mi>M</mi><mi>D</mi><mi>C</mi></mrow></math></span>), Mahalanobis distance classification (<span><math><mrow><mi>M</mi><mi>a</mi><mi>D</mi><mi>C</mi></mrow></math></span>), Maximum likelihood classification (<span><math><mrow><mi>M</mi><mi>L</mi><mi>C</mi></mrow></math></span>), Spectral angle mapper classification (<span><math><mrow><mi>S</mi><mi>A</mi><mi>M</mi><mi>C</mi></mrow></math></span>) and Spectral information divergence classification (<span><math><mrow><mi>S</mi><mi>I</mi><mi>D</mi><mi>C</mi></mrow></math></span>) are used to classify the satellite data of the study area. Thus based on classification results and statistical features, it has been observed that <span><math><mrow><mi>P</mi><mi>P</mi><mi>C</mi><mspace></mspace></mrow></math></span>has obtained the least significant results. In contrast, the most reliable results and highest classification accuracies are obtained through <span><math><mrow><mi>M</mi><mi>D</mi><mi>C</mi></mrow></math></span>, <span><math><mrow><mi>M</mi><mi>a</mi><mi>D</mi><mi>C</mi></mrow></math></span>, and <span><math><mrow><mi>M</mi><mi>L</mi><mi>C</mi><mspace></mspace></mrow></math></span>classification algorithms.</p></div>","PeriodicalId":100582,"journal":{"name":"Geosystems and Geoenvironment","volume":"2 2","pages":"Article 100163"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosystems and Geoenvironment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772883822001388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This research identifies the optimum supervised classification algorithm based on modeling Covid 19 lockdown situations all around the World. The deadly Covid 19 viruses suddenly stopped the fast-moving world and all the commercial and noncommercial activities were stalled for an uncertain period during 2020-2021. In this work, object-based image classification approaches have been used to compare pre-Covid and post-Covid (at the time lockdown) images of the study area. These study areas are Washington DC, USA, Sao Paulo, Brazil, Cairo, Egypt, Afghanistan/Iran border, and Beijing, China. All the study areas possess different geographical conditions but have a similar situation of Covid 19 lockdowns. Six supervised image classification techniques are known as Parallelepiped classification (PPC), Minimum distance classification (MDC), Mahalanobis distance classification (MaDC), Maximum likelihood classification (MLC), Spectral angle mapper classification (SAMC) and Spectral information divergence classification (SIDC) are used to classify the satellite data of the study area. Thus based on classification results and statistical features, it has been observed that PPChas obtained the least significant results. In contrast, the most reliable results and highest classification accuracies are obtained through MDC, MaDC, and MLCclassification algorithms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PlanetScope和Skysat多光谱卫星数据的最优监督分类算法识别
这项研究基于对世界各地Covidneneneea 19封锁情况的建模,确定了最佳监督分类算法。致命的新冠肺炎19型病毒突然停止了快速发展的世界,2020-2021年期间,所有商业和非商业活动都停滞了一段不确定的时间。在这项工作中,基于对象的图像分类方法被用于比较研究区域的新冠疫情前和新冠疫情后(封锁时)图像。这些研究区域包括美国华盛顿特区、巴西圣保罗、埃及开罗、阿富汗/伊朗边境和中国北京。所有研究地区都有不同的地理条件,但新冠肺炎19封锁的情况相似。采用平行核分类(PPC)、最小距离分类(MDC)、马氏距离分类(MaDC)、最大似然分类(MLC)、谱角映射器分类(SAMC)和谱信息发散分类(SIDC)六种监督图像分类技术对研究区域的卫星数据进行分类。因此,根据分类结果和统计特征,可以观察到PPC获得的结果最不显著。相反,通过MDC、MaDC和MLC分类算法可以获得最可靠的结果和最高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Olivine composition of calcite-carbonatite from Sevvattur carbonatite alkaline complex, Dharmapuri Rift Zone, Southern Granulite Terrain, India Composition of olivines and spinel group minerals in aillikites from the Bushkanay dyke, South Siberian Craton: Insights into alkaline melt sources and evolution Petrology of ijolite xenoliths entrained in a nephelinite dyke from the Kamthai area, Late Cretaceous polychronous Sarnu-Dandali alkaline complex, North-West India: Evidence for recurrent magmatic pulses and magma mixing Petrogenetic and geochemical constraints on ca. 1.89–1.88 Ga Bastanar mafic dyke swarm, Bastar craton, India: Insights into MORB- and OIB-type contributions and interactions with metasomatized subcontinental lithospheric mantle Nd isotope systematics of Late Paleozoic granitoids from the Western Transbaikalia (Russia): Petrological consequences and plume model testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1