Stephan A. Brinckmann , Jason C. Young , Ray S. Fertig III , Carl P. Frick
{"title":"Effect of print direction on mechanical properties of 3D printed polymer-derived ceramics and their precursors","authors":"Stephan A. Brinckmann , Jason C. Young , Ray S. Fertig III , Carl P. Frick","doi":"10.1016/j.mlblux.2022.100179","DOIUrl":null,"url":null,"abstract":"<div><p>The use of engineering ceramics with intricate geometries is limited by manufacturing processes and lack ease of machinability of ceramics. Additive manufacturing of pre-ceramic polymers which are pyrolyzed into ceramics after 3D printing has recently been used to circumvent traditional manufacturing processes creating ceramics with complex geometries, however, mechanical characterization is limited. Polymer-derived ceramics and their green-body precursors are printed using digital light projection 3D printing in two orientations (0°- and 90°- to the build plate) and mechanically characterized. The results show that mechanical anisotropy exists both in the green-body polymer samples where the 0°-samples are stronger and stiffer than their 90°-counterparts and the final ceramics, where the stronger samples are fabricated at 90° despite isotropic hardness measurements. Through the manufacturing process, it was noted that samples undergoing pyrolysis built in the 90°-orientation have a pyrolysis survival rate of 94% whereas the 0°-samples showed a survival rate of 54%. The results suggest that the build-direction of 3D printed green-bodies plays a role in both material manufacturing and mechanical integrity of the final ceramic materials.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"17 ","pages":"Article 100179"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259015082200059X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of engineering ceramics with intricate geometries is limited by manufacturing processes and lack ease of machinability of ceramics. Additive manufacturing of pre-ceramic polymers which are pyrolyzed into ceramics after 3D printing has recently been used to circumvent traditional manufacturing processes creating ceramics with complex geometries, however, mechanical characterization is limited. Polymer-derived ceramics and their green-body precursors are printed using digital light projection 3D printing in two orientations (0°- and 90°- to the build plate) and mechanically characterized. The results show that mechanical anisotropy exists both in the green-body polymer samples where the 0°-samples are stronger and stiffer than their 90°-counterparts and the final ceramics, where the stronger samples are fabricated at 90° despite isotropic hardness measurements. Through the manufacturing process, it was noted that samples undergoing pyrolysis built in the 90°-orientation have a pyrolysis survival rate of 94% whereas the 0°-samples showed a survival rate of 54%. The results suggest that the build-direction of 3D printed green-bodies plays a role in both material manufacturing and mechanical integrity of the final ceramic materials.