Pengfei Chen , Shichang Kang , Qinyi Gan , Ye Yu , Xianlei Yuan , Yajun Liu , Lekhendra Tripathee , Xiaoxiang Wang , Chaoliu Li
{"title":"Concentrations and light absorption properties of PM2.5 organic and black carbon based on online measurements in Lanzhou, China","authors":"Pengfei Chen , Shichang Kang , Qinyi Gan , Ye Yu , Xianlei Yuan , Yajun Liu , Lekhendra Tripathee , Xiaoxiang Wang , Chaoliu Li","doi":"10.1016/j.jes.2022.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>To elucidate the variations in mass concentrations of organic carbon (OC) and black carbon (BC) in PM<sub>2.5</sub> and their light absorption characteristics in Lanzhou, we conducted one-year online measurements by using a newly developed total carbon analyzer (TCA08) coupled with an aethalometer (AE33) from July 2018 to July 2019. The mean OC and BC concentrations were 6.4 ± 4.4 and 2.0 ± 1.3 µg/m<sup>3</sup>, respectively. Clear seasonal variations were observed for both components, with winter having the highest concentrations, followed by autumn, spring, and summer. The diurnal variations of OC and BC concentrations were similar throughout the year, with daily two peaks occurring in the morning and evening, respectively. A relatively low OC/BC ratio (3.3 ± 1.2, <em>n</em> = 345) were observed, indicating that fossil fuel combustion was the primary source of the carbonaceous components. This is further substantiated by relatively low biomass burning contribution (<em>f</em><sub>biomass</sub>: 27.1% ± 11.3%) to BC using aethalometer based measurement though <em>f</em><sub>biomass</sub> value which increased significantly in winter (41.6% ± 5.7%). We estimated a considerable brown carbon (BrC) contribution to the total absorption coefficient (<em>b</em><sub>abs</sub>) at 370 nm (yearly average of 30.8% ± 11.1%), with a winter maximum of 44.2% ± 4.1% and a summer minimum of 19.2% ± 4.2%. Calculation of the wavelength dependence of total <em>b</em><sub>abs</sub> revealed an annual mean AAE<sub>370-520</sub> value of 4.2 ± 0.5, with slightly higher values in spring and winter. The mass absorption cross-section of BrC also exhibited higher values in winter, with an annual mean of 5.4 ± 1.9 m<sup>2</sup>/g, reflecting the impact of emissions from increased biomass burning on BrC concentrations.</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"131 ","pages":"Pages 84-95"},"PeriodicalIF":6.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental sciences","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074222004107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 2
Abstract
To elucidate the variations in mass concentrations of organic carbon (OC) and black carbon (BC) in PM2.5 and their light absorption characteristics in Lanzhou, we conducted one-year online measurements by using a newly developed total carbon analyzer (TCA08) coupled with an aethalometer (AE33) from July 2018 to July 2019. The mean OC and BC concentrations were 6.4 ± 4.4 and 2.0 ± 1.3 µg/m3, respectively. Clear seasonal variations were observed for both components, with winter having the highest concentrations, followed by autumn, spring, and summer. The diurnal variations of OC and BC concentrations were similar throughout the year, with daily two peaks occurring in the morning and evening, respectively. A relatively low OC/BC ratio (3.3 ± 1.2, n = 345) were observed, indicating that fossil fuel combustion was the primary source of the carbonaceous components. This is further substantiated by relatively low biomass burning contribution (fbiomass: 27.1% ± 11.3%) to BC using aethalometer based measurement though fbiomass value which increased significantly in winter (41.6% ± 5.7%). We estimated a considerable brown carbon (BrC) contribution to the total absorption coefficient (babs) at 370 nm (yearly average of 30.8% ± 11.1%), with a winter maximum of 44.2% ± 4.1% and a summer minimum of 19.2% ± 4.2%. Calculation of the wavelength dependence of total babs revealed an annual mean AAE370-520 value of 4.2 ± 0.5, with slightly higher values in spring and winter. The mass absorption cross-section of BrC also exhibited higher values in winter, with an annual mean of 5.4 ± 1.9 m2/g, reflecting the impact of emissions from increased biomass burning on BrC concentrations.
期刊介绍:
Journal of Environmental Sciences is an international peer-reviewed journal established in 1989. It is sponsored by the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, and it is jointly published by Elsevier and Science Press. It aims to foster interdisciplinary communication and promote understanding of significant environmental issues. The journal seeks to publish significant and novel research on the fate and behaviour of emerging contaminants, human impact on the environment, human exposure to environmental contaminants and their health effects, and environmental remediation and management. Original research articles, critical reviews, highlights, and perspectives of high quality are published both in print and online.