Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review

IF 6.9 Q1 Environmental Science Journal of environmental sciences Pub Date : 2023-06-20 DOI:10.1016/j.jes.2023.06.012
Bin Chen , Jiang Xu , Lizhong Zhu
{"title":"Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review","authors":"Bin Chen ,&nbsp;Jiang Xu ,&nbsp;Lizhong Zhu","doi":"10.1016/j.jes.2023.06.012","DOIUrl":null,"url":null,"abstract":"<div><p>Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO<sub>2</sub> reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"139 ","pages":"Pages 428-445"},"PeriodicalIF":6.9000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental sciences","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074223002681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

Abstract

Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可控化学氧化还原反应耦合微生物降解在有机污染场地修复中的研究进展
在城市化和产业结构调整过程中,全球对有机污染场地的环境关注日益突出。虽然传统的物理或化学修复技术可能会严重破坏土壤结构和功能,但将适度的化学降解与微生物修复相结合,成为污染场地绿色、经济、高效修复的潜在途径。因此,本工作系统地阐述了为什么以及如何将化学技术与微生物修复相结合,主要集中在有机污染物的可控氧化还原反应上。介绍了化学氧化材料结构的合理设计、活性氧的选择性生成和降解途径的估计。同时,介绍了目前在高效选择性还原有机污染物(即脱氯、脱氟、-NO2还原)方面的进展。结合污染场地的微生物修复,从基础和实践两个角度提出了如何将化学修复与微生物修复相结合的几个考虑因素。这篇综述将促进对有机污染场地化学-微生物联合修复的理解和发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of environmental sciences
Journal of environmental sciences Environmental Science (General)
CiteScore
12.80
自引率
0.00%
发文量
0
审稿时长
17 days
期刊介绍: Journal of Environmental Sciences is an international peer-reviewed journal established in 1989. It is sponsored by the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, and it is jointly published by Elsevier and Science Press. It aims to foster interdisciplinary communication and promote understanding of significant environmental issues. The journal seeks to publish significant and novel research on the fate and behaviour of emerging contaminants, human impact on the environment, human exposure to environmental contaminants and their health effects, and environmental remediation and management. Original research articles, critical reviews, highlights, and perspectives of high quality are published both in print and online.
期刊最新文献
Editorial Board Core-shell design of UiO66-Fe3O4 configured with EDTA-assisted washing for rapid adsorption and simple recovery of heavy metal pollutants from soil Exposure to methylparaben at environmentally realistic concentrations significantly impairs neuronal health in adult zebrafish Diamine-modified porous indium frameworks with crystalline porous materials (CPM)-5 structure for carbon dioxide fixation under co-catalyst and solvent free conditions Estimation of surface ozone concentration over Jiangsu province using a high-performance deep learning model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1