Amin Vafadarnikjoo , Md. Abdul Moktadir , Sanjoy Kumar Paul , Syed Mithun Ali
{"title":"A novel grey multi-objective binary linear programming model for risk assessment in supply chain management","authors":"Amin Vafadarnikjoo , Md. Abdul Moktadir , Sanjoy Kumar Paul , Syed Mithun Ali","doi":"10.1016/j.sca.2023.100012","DOIUrl":null,"url":null,"abstract":"<div><p>Robust and resilient agri-food supply chain management (AFSCM) is paramount to agribusinesses, given the many challenges and risks that this increased demand will bring in the coming decades. Interruptions caused by various risks to this crucial supply chain network, particularly in emerging economies, can put the lives of millions in danger, not to mention creating devastating impacts on the economy and the environment. Even so, there are only a limited number of quantitative risk management studies in the AFSCM literature. In this study, an integrated modified risk mitigation matrix (M-RMM) is developed to analyze the mitigation strategies for dealing with various risks in the context of the agri-food supply chain. The M-RMM is integrated with the grey multi-objective binary linear programming (GMOBLP) model to obtain the optimal risk mitigation strategies related to the three objective functions of risk, cost, and time minimization. The proposed model is a useful tool for formulating sustainable business policies and reducing food waste, and acquiring a context-specific (i.e., a developing economy), sector-specific (i.e., the agri-food processing sector), and multi-product (i.e., fresh and non-perishable) approach. The findings reveal that continuous training and development and vulnerability analysis of IT systems are the most effective risk mitigation strategies to lessen the impacts of lack of skilled personnel, sub-standard leadership, failure in IT systems, insufficient capacity to produce quality products, and poor customer relationships. The findings assist practitioners in managing risks in supply chains.</p></div>","PeriodicalId":101186,"journal":{"name":"Supply Chain Analytics","volume":"2 ","pages":"Article 100012"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supply Chain Analytics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949863523000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Robust and resilient agri-food supply chain management (AFSCM) is paramount to agribusinesses, given the many challenges and risks that this increased demand will bring in the coming decades. Interruptions caused by various risks to this crucial supply chain network, particularly in emerging economies, can put the lives of millions in danger, not to mention creating devastating impacts on the economy and the environment. Even so, there are only a limited number of quantitative risk management studies in the AFSCM literature. In this study, an integrated modified risk mitigation matrix (M-RMM) is developed to analyze the mitigation strategies for dealing with various risks in the context of the agri-food supply chain. The M-RMM is integrated with the grey multi-objective binary linear programming (GMOBLP) model to obtain the optimal risk mitigation strategies related to the three objective functions of risk, cost, and time minimization. The proposed model is a useful tool for formulating sustainable business policies and reducing food waste, and acquiring a context-specific (i.e., a developing economy), sector-specific (i.e., the agri-food processing sector), and multi-product (i.e., fresh and non-perishable) approach. The findings reveal that continuous training and development and vulnerability analysis of IT systems are the most effective risk mitigation strategies to lessen the impacts of lack of skilled personnel, sub-standard leadership, failure in IT systems, insufficient capacity to produce quality products, and poor customer relationships. The findings assist practitioners in managing risks in supply chains.