Shimul Roy , Ying Yi Jodie Chu , Shauhrat S. Chopra
{"title":"Life cycle environmental impact assessment of cotton recycling and the benefits of a Take-Back system","authors":"Shimul Roy , Ying Yi Jodie Chu , Shauhrat S. Chopra","doi":"10.1016/j.rcradv.2023.200177","DOIUrl":null,"url":null,"abstract":"<div><p>This study assessed the contribution of mechanically recycled cotton to reducing environmental impacts of fabric production by blending the recycled cotton with 100% virgin cotton of different types, including the U.S., BCI-Brazilian, Global average, and China. GHG emissions, water footprint, air pollution, and land use were investigated for producing 1 kg fabric, considering a 'cradle-to-gate' approach. A 'Take-Back' system was modeled using the circular economy concept to illustrate potential impact reduction by avoiding virgin cotton. Impact reduction scenarios were created considering varying blending ratios (i.e., virgin/ recycled), focusing on 70% virgin and 30% recycled cotton (target). Results reveal that compared to the baseline impacts, the target scenario could reduce environmental impacts by 2.2–8.6% (GHG emissions), 0.6–24.5% (water footprint), 1.4–11.6% (air pollution), and 3.1–25.2% (land use). In summary, recycled cotton could partially substitute 100% virgin cotton for fabric production. Besides, implementing and scaling up the 'Take-Back' system could reduce environmental impacts and contribute to environmental sustainability.</p></div>","PeriodicalId":74689,"journal":{"name":"Resources, conservation & recycling advances","volume":"19 ","pages":"Article 200177"},"PeriodicalIF":5.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources, conservation & recycling advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667378923000494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study assessed the contribution of mechanically recycled cotton to reducing environmental impacts of fabric production by blending the recycled cotton with 100% virgin cotton of different types, including the U.S., BCI-Brazilian, Global average, and China. GHG emissions, water footprint, air pollution, and land use were investigated for producing 1 kg fabric, considering a 'cradle-to-gate' approach. A 'Take-Back' system was modeled using the circular economy concept to illustrate potential impact reduction by avoiding virgin cotton. Impact reduction scenarios were created considering varying blending ratios (i.e., virgin/ recycled), focusing on 70% virgin and 30% recycled cotton (target). Results reveal that compared to the baseline impacts, the target scenario could reduce environmental impacts by 2.2–8.6% (GHG emissions), 0.6–24.5% (water footprint), 1.4–11.6% (air pollution), and 3.1–25.2% (land use). In summary, recycled cotton could partially substitute 100% virgin cotton for fabric production. Besides, implementing and scaling up the 'Take-Back' system could reduce environmental impacts and contribute to environmental sustainability.