Budgeting for SDGs: Quantitative methods to assess the potential impacts of public expenditure

Q1 Economics, Econometrics and Finance Development Engineering Pub Date : 2023-05-23 DOI:10.1016/j.deveng.2023.100113
Daniele Guariso , Gonzalo Castañeda , Omar A. Guerrero
{"title":"Budgeting for SDGs: Quantitative methods to assess the potential impacts of public expenditure","authors":"Daniele Guariso ,&nbsp;Gonzalo Castañeda ,&nbsp;Omar A. Guerrero","doi":"10.1016/j.deveng.2023.100113","DOIUrl":null,"url":null,"abstract":"<div><p>Using a novel large-scale dataset that links thousands of expenditure programs to the Sustainable Development Goals for over a decade, we analyze the impact of public expenditure on more than 100 different development indicators. Contrary to the single-dimensional view of evaluating expenditure in terms of overall economic growth, we take a multi-dimensional approach. Then, we assess the effectiveness of three quantitative methods for capturing expenditure effects on development: (1) regression analysis, (2) machine learning techniques, and (3) agent computing. We find that, under the existing data and for this particular task, approaches (1) and (2) have difficulties disentangling sector-specific effects (i.e., target effects in the SDG semantics), which is consistent with results in previous empirical research. In contrast, by applying a micro-founded agent-computing model of policy prioritization, we can provide empirical evidence about potential impacts and bottlenecks across a high-dimensional policy space. Our findings suggest that, in the discussion of budgeting for SDGs, one should carefully evaluate the data available, the suitability of data-driven approaches, and consider alternative methods that are richer in terms of incorporating explicit causal mechanisms and scalable to a large set of indicators.</p></div>","PeriodicalId":37901,"journal":{"name":"Development Engineering","volume":"8 ","pages":"Article 100113"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352728523000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

Using a novel large-scale dataset that links thousands of expenditure programs to the Sustainable Development Goals for over a decade, we analyze the impact of public expenditure on more than 100 different development indicators. Contrary to the single-dimensional view of evaluating expenditure in terms of overall economic growth, we take a multi-dimensional approach. Then, we assess the effectiveness of three quantitative methods for capturing expenditure effects on development: (1) regression analysis, (2) machine learning techniques, and (3) agent computing. We find that, under the existing data and for this particular task, approaches (1) and (2) have difficulties disentangling sector-specific effects (i.e., target effects in the SDG semantics), which is consistent with results in previous empirical research. In contrast, by applying a micro-founded agent-computing model of policy prioritization, we can provide empirical evidence about potential impacts and bottlenecks across a high-dimensional policy space. Our findings suggest that, in the discussion of budgeting for SDGs, one should carefully evaluate the data available, the suitability of data-driven approaches, and consider alternative methods that are richer in terms of incorporating explicit causal mechanisms and scalable to a large set of indicators.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可持续发展目标预算编制:评估公共支出潜在影响的量化方法
使用一个新的大规模数据集,将数千个支出计划与十多年来的可持续发展目标联系起来,我们分析了公共支出对100多个不同发展指标的影响。与从整体经济增长角度评估支出的单一维度观点相反,我们采取了多维度的方法。然后,我们评估了三种量化方法捕捉支出对发展的影响的有效性:(1)回归分析,(2)机器学习技术,以及(3)代理计算。我们发现,在现有数据下,对于这一特定任务,方法(1)和(2)很难解开特定部门的效应(即SDG语义中的目标效应),这与之前的实证研究结果一致。相反,通过应用基于微观的政策优先级代理计算模型,我们可以提供关于高维政策空间中潜在影响和瓶颈的经验证据。我们的研究结果表明,在讨论可持续发展目标的预算编制时,应该仔细评估可用数据、数据驱动方法的适用性,并考虑在纳入明确因果机制方面更丰富、可扩展到一大套指标的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Development Engineering
Development Engineering Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
4.90
自引率
0.00%
发文量
11
审稿时长
31 weeks
期刊介绍: Development Engineering: The Journal of Engineering in Economic Development (Dev Eng) is an open access, interdisciplinary journal applying engineering and economic research to the problems of poverty. Published studies must present novel research motivated by a specific global development problem. The journal serves as a bridge between engineers, economists, and other scientists involved in research on human, social, and economic development. Specific topics include: • Engineering research in response to unique constraints imposed by poverty. • Assessment of pro-poor technology solutions, including field performance, consumer adoption, and end-user impacts. • Novel technologies or tools for measuring behavioral, economic, and social outcomes in low-resource settings. • Hypothesis-generating research that explores technology markets and the role of innovation in economic development. • Lessons from the field, especially null results from field trials and technical failure analyses. • Rigorous analysis of existing development "solutions" through an engineering or economic lens. Although the journal focuses on quantitative, scientific approaches, it is intended to be suitable for a wider audience of development practitioners and policy makers, with evidence that can be used to improve decision-making. It also will be useful for engineering and applied economics faculty who conduct research or teach in "technology for development."
期刊最新文献
Assessing sustainability focus across global banks Budgeting for SDGs: Quantitative methods to assess the potential impacts of public expenditure Techno-economic scenario analysis of containerized solar energy for use cases at the food/water/health nexus in Rwanda Evaluation of open-ended, clustering, and discrete choice methods for user requirements development in a low-income country context Sensors show long-term dis-adoption of purchased improved cookstoves in rural India, while surveys miss it entirely
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1