SSFuzzyART: A Semi-Supervised Fuzzy ART through seeding initialization and a clustered data generation algorithm to deeply study clustering solutions

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS Array Pub Date : 2023-09-01 DOI:10.1016/j.array.2023.100319
Siwar Jendoubi, Aurélien Baelde, Thong Tran
{"title":"SSFuzzyART: A Semi-Supervised Fuzzy ART through seeding initialization and a clustered data generation algorithm to deeply study clustering solutions","authors":"Siwar Jendoubi,&nbsp;Aurélien Baelde,&nbsp;Thong Tran","doi":"10.1016/j.array.2023.100319","DOIUrl":null,"url":null,"abstract":"<div><p>Semi-supervised clustering is a machine learning technique that was introduced to boost clustering performance when labeled data is available. Indeed, some labeled data are usually available in real use cases, and can be used to initialize the clustering process to guide it and to make it more efficient. Fuzzy ART is a clustering technique that is proved to be efficient in several real cases, but as an unsupervised algorithm, it cannot use available labeled data. This paper introduces a semi-supervised variant of the FuzzyART clustering algorithm (SSFuzzyART). The proposed solution uses the available labeled data to initialize clusters centers. In another hand, to deeply evaluate the characteristics of the proposed algorithm, a clustered binary data generation algorithm with controlled partitioning is also introduced in this paper. Indeed, the controlled generated clusters allows studying the characteristics of the proposed SSFuzzyART. Furthermore, a set of experiments is carried out on some available benchmarks. SSFuzzyART demonstrated better clustering prediction results than its classic counterpart.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"19 ","pages":"Article 100319"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005623000449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-supervised clustering is a machine learning technique that was introduced to boost clustering performance when labeled data is available. Indeed, some labeled data are usually available in real use cases, and can be used to initialize the clustering process to guide it and to make it more efficient. Fuzzy ART is a clustering technique that is proved to be efficient in several real cases, but as an unsupervised algorithm, it cannot use available labeled data. This paper introduces a semi-supervised variant of the FuzzyART clustering algorithm (SSFuzzyART). The proposed solution uses the available labeled data to initialize clusters centers. In another hand, to deeply evaluate the characteristics of the proposed algorithm, a clustered binary data generation algorithm with controlled partitioning is also introduced in this paper. Indeed, the controlled generated clusters allows studying the characteristics of the proposed SSFuzzyART. Furthermore, a set of experiments is carried out on some available benchmarks. SSFuzzyART demonstrated better clustering prediction results than its classic counterpart.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SSFuzyART:一种通过种子初始化的半监督模糊ART和聚类数据生成算法来深入研究聚类解决方案
半监督聚类是一种机器学习技术,用于在标记数据可用时提高聚类性能。事实上,一些标记的数据通常在实际用例中是可用的,并且可以用于初始化集群过程,以指导它并使它更高效。模糊ART是一种聚类技术,在一些实际情况下被证明是有效的,但作为一种无监督算法,它不能使用可用的标记数据。本文介绍了FuzzyART聚类算法的一个半监督变体(SSFuzzyART)。所提出的解决方案使用可用的标记数据来初始化集群中心。另一方面,为了深入评估该算法的特点,本文还介绍了一种具有控制分区的聚类二进制数据生成算法。事实上,受控生成的簇允许研究所提出的SSFuzyART的特性。此外,还在一些可用的基准上进行了一系列实验。SSFuzyART的聚类预测结果优于传统的聚类预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
期刊最新文献
Combining computational linguistics with sentence embedding to create a zero-shot NLIDB Development of automatic CNC machine with versatile applications in art, design, and engineering Dual-model approach for one-shot lithium-ion battery state of health sequence prediction Maximizing influence via link prediction in evolving networks Assessing generalizability of Deep Reinforcement Learning algorithms for Automated Vulnerability Assessment and Penetration Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1