Cellular structure engineering of additive manufactured CoCrFeMnNi high-entropy composite: The role of hard ceramic reinforcements in elemental segregation of constitutive elements

IF 4.2 Q2 ENGINEERING, MANUFACTURING Additive manufacturing letters Pub Date : 2023-09-22 DOI:10.1016/j.addlet.2023.100172
Soung Yeoul Ahn , Farahnaz Haftlang , Eun Seong Kim , Ji Sun Lee , Sang Guk Jeong , Jae Bok Seol , Hyunjoo Choi , Hyoung Seop Kim
{"title":"Cellular structure engineering of additive manufactured CoCrFeMnNi high-entropy composite: The role of hard ceramic reinforcements in elemental segregation of constitutive elements","authors":"Soung Yeoul Ahn ,&nbsp;Farahnaz Haftlang ,&nbsp;Eun Seong Kim ,&nbsp;Ji Sun Lee ,&nbsp;Sang Guk Jeong ,&nbsp;Jae Bok Seol ,&nbsp;Hyunjoo Choi ,&nbsp;Hyoung Seop Kim","doi":"10.1016/j.addlet.2023.100172","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores cellular structures in TiC/B<sub>4</sub>C<img>CoCrFeMnNi high-entropy composites (HECs) fabricated by direct energy deposition (DED) additive manufacturing process, investigating the role of TiC and B<sub>4</sub>C nano-paticles in enhancing mechanical properties. Despite larger dislocation cell structures and thinner boundaries in TiC/B<sub>4</sub>C<img>CoCrFeMnNi HECs compared to CoCrFeMnNi high-entropy alloy (HEA), they exhibit significantly higher hardness and strength, challenging traditional strength-size relationships. Additionally, we examine the behavior of ceramic nano-particles (TiC and B<sub>4</sub>C) with high melting points relative to matrix CoCrFeMnNi HEA. Rapid scanning prevents full nano-particle melting, leading to distinct element distribution of cell structure. These findings provide insights for selecting suitable nanoceramic particles in HEC development via metal additive manufacturing.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277236902300052X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores cellular structures in TiC/B4CCoCrFeMnNi high-entropy composites (HECs) fabricated by direct energy deposition (DED) additive manufacturing process, investigating the role of TiC and B4C nano-paticles in enhancing mechanical properties. Despite larger dislocation cell structures and thinner boundaries in TiC/B4CCoCrFeMnNi HECs compared to CoCrFeMnNi high-entropy alloy (HEA), they exhibit significantly higher hardness and strength, challenging traditional strength-size relationships. Additionally, we examine the behavior of ceramic nano-particles (TiC and B4C) with high melting points relative to matrix CoCrFeMnNi HEA. Rapid scanning prevents full nano-particle melting, leading to distinct element distribution of cell structure. These findings provide insights for selecting suitable nanoceramic particles in HEC development via metal additive manufacturing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增材制造CoCrFeMnNi高熵复合材料的胞状结构工程:硬质陶瓷增强剂在本构元素偏析中的作用
本研究探索了通过直接能量沉积(DED)增材制造工艺制备的TiC/B4CCoCrFeMnNi高熵复合材料(HECs)中的细胞结构,研究了TiC和B4C纳米颗粒在提高力学性能中的作用。尽管与CoCrFeMnNi高熵合金(HEA)相比,TiC/B4CCoCrFeMnNi HECs中的位错胞结构更大,边界更薄,但它们表现出显著更高的硬度和强度,挑战了传统的强度-尺寸关系。此外,我们还研究了具有高熔点的陶瓷纳米粒子(TiC和B4C)相对于基体CoCrFeMnNi HEA的行为。快速扫描可防止纳米颗粒完全熔化,导致细胞结构的元素分布明显。这些发现为通过金属增材制造在HEC开发中选择合适的纳米陶瓷颗粒提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
期刊最新文献
Modelling process monitoring data in laser powder bed fusion: A pragmatic route to additive manufacturing quality assurance Drop-on-demand 3D printing of programable magnetic composites for soft robotics In-situ heating TEM observation of solidification cell evolutions in an Al-Fe alloy built by laser-powder bed fusion A non-melting additive approach to structural repair of aluminum aircraft fastener holes Enabling tailored microstructures by hybrid directed energy deposition processing of a nickel-based superalloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1