On the development of twinning-induced plasticity in additively manufactured 316L stainless steel

IF 4.2 Q2 ENGINEERING, MANUFACTURING Additive manufacturing letters Pub Date : 2023-10-11 DOI:10.1016/j.addlet.2023.100176
D. Della Crociata, I. Maskery, R. Hague, M. Simonelli
{"title":"On the development of twinning-induced plasticity in additively manufactured 316L stainless steel","authors":"D. Della Crociata,&nbsp;I. Maskery,&nbsp;R. Hague,&nbsp;M. Simonelli","doi":"10.1016/j.addlet.2023.100176","DOIUrl":null,"url":null,"abstract":"<div><p>A report on twinning-induced plasticity in 316L stainless steel manufactured by metal additive manufacturing (AM) is presented. A tapered tensile test geometry was used which enabled the investigation of twin formation over a range of strain levels in a single specimen. Hardness and twinning concentration were observed to increase with strain up to peak values of 380 ± 10 HV and 28 ± 4%, respectively. Furthermore, twin formation was found to be regulated by grain size and crystal texture. This methodology can be applied to new AM materials development and will inform the design of energy-absorbing structures that maximise the benefits of AM design and strain-hardenable materials.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"7 ","pages":"Article 100176"},"PeriodicalIF":4.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369023000567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

A report on twinning-induced plasticity in 316L stainless steel manufactured by metal additive manufacturing (AM) is presented. A tapered tensile test geometry was used which enabled the investigation of twin formation over a range of strain levels in a single specimen. Hardness and twinning concentration were observed to increase with strain up to peak values of 380 ± 10 HV and 28 ± 4%, respectively. Furthermore, twin formation was found to be regulated by grain size and crystal texture. This methodology can be applied to new AM materials development and will inform the design of energy-absorbing structures that maximise the benefits of AM design and strain-hardenable materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增材制造316L不锈钢孪晶诱导塑性研究进展
本文报道了金属增材制造316L不锈钢的孪晶诱发塑性。使用了锥形拉伸试验几何结构,这使得能够在单个样品的一系列应变水平上研究孪晶的形成。观察到硬度和孪晶浓度随着应变的增加而增加,分别达到380±10HV和28±4%的峰值。此外,发现孪晶的形成受晶粒尺寸和晶体结构的调节。该方法可应用于新AM材料的开发,并将为能量吸收结构的设计提供信息,以最大限度地提高AM设计和应变硬化材料的效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
期刊最新文献
Liquid-induced heat treatment strategy for eliminating anisotropy of IN718 fabricated by laser powder bed fusion Comparative analysis of machining and electropolishing for surface quality improvement of shape memory nitinol samples additively manufactured by laser powder bed fusion Resin-dependent mechanical anisotropy in laser vat photopolymerization correlates to the initial rate of polymerization and critical energy Micro-X-ray-CT for analysis of particle size segregation during powder spreading in Binder Jet Printing Thermo-mechanical response of aluminum alloy in the additive friction-stir deposition process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1