Genhui Teng , Baorui Liu , Zhe Kang , Yanhui Xie , Dongying Hu , Dawei Zhao
{"title":"Strategic design of self-generated Ni-N-C hybrid sites in 3D network structures as counter electrodes in photovoltaics","authors":"Genhui Teng , Baorui Liu , Zhe Kang , Yanhui Xie , Dongying Hu , Dawei Zhao","doi":"10.1016/j.recm.2022.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>The technical bottleneck of carbon materials as counter electrodes (CEs) lies in their limited electrical conductivity, extended ion diffusion paths, poor dispersion, and high contact resistance. Problem-oriented in-situ self-grown N-doped CNTs-coated Ni nanoparticles based on N-doped carbonaceous structures derived from pitaya peel (PC) are adopted to construct Ni-N-C hybrid 3D ionized network sites (Ni@NCNTs/PC-4) as CEs. Structural characterization, micromorphological and chemical composition analyses revealed the 3D network structure of Ni@NCNTs/PC-4 with abundant active sites. They effectively shorten the diffusion distance of I<sub>3</sub><sup>−</sup> ions with a smaller charge transfer resistance (5.21 Ω) than that of PC (12.53 Ω). DSSCs based on Ni@NCNTs/PC-4 display good optoelectronic properties, in which the short-circuit current density (Jsc) is 13.27 mA/cm<sup>2</sup>, higher than those of Pt (11.66 mA/cm<sup>2</sup>) and PC (6.99 mA/cm<sup>2</sup>). The PCE value (5.13%) of DSSCs based on Ni@NCNTs/PC-4 is also higher than that of DSSCs based on PC (2.47%). Overall, this work provides a preliminary research and new ideas for further in-depth study of biomass-derived 3D structured-carbons that contribute to key electrodes in DSSCs.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"2 1","pages":"Pages 1-10"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Chemicals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772443322000563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The technical bottleneck of carbon materials as counter electrodes (CEs) lies in their limited electrical conductivity, extended ion diffusion paths, poor dispersion, and high contact resistance. Problem-oriented in-situ self-grown N-doped CNTs-coated Ni nanoparticles based on N-doped carbonaceous structures derived from pitaya peel (PC) are adopted to construct Ni-N-C hybrid 3D ionized network sites (Ni@NCNTs/PC-4) as CEs. Structural characterization, micromorphological and chemical composition analyses revealed the 3D network structure of Ni@NCNTs/PC-4 with abundant active sites. They effectively shorten the diffusion distance of I3− ions with a smaller charge transfer resistance (5.21 Ω) than that of PC (12.53 Ω). DSSCs based on Ni@NCNTs/PC-4 display good optoelectronic properties, in which the short-circuit current density (Jsc) is 13.27 mA/cm2, higher than those of Pt (11.66 mA/cm2) and PC (6.99 mA/cm2). The PCE value (5.13%) of DSSCs based on Ni@NCNTs/PC-4 is also higher than that of DSSCs based on PC (2.47%). Overall, this work provides a preliminary research and new ideas for further in-depth study of biomass-derived 3D structured-carbons that contribute to key electrodes in DSSCs.