{"title":"Composite adaptation and learning for robot control: A survey","authors":"Kai Guo , Yongping Pan","doi":"10.1016/j.arcontrol.2022.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Composite adaptation and learning techniques were initially proposed for improving parameter convergence in adaptive control and have generated considerable research interest in the last three decades, inspiring numerous robot control applications. The key idea is that more sources of parametric information are applied to drive parameter estimates aside from trajectory tracking errors. Both composite adaptation and learning can ensure superior stability and performance. However, composite learning possesses a unique feature in that online data memory is fully exploited to extract parametric information such that parameter convergence can be achieved without a stringent condition termed persistent excitation. In this article, we provide the first systematic and comprehensive survey of prevalent composite adaptation and learning approaches for robot control, especially focusing on exponential parameter convergence. Composite adaptation is classified into regressor-filtering composite adaptation and error-filtering composite adaptation, and composite learning is classified into discrete-data regressor extension and continuous-data regressor extension. For the sake of clear presentation and better understanding, a general class of robotic systems is applied as a unifying framework to show the motivation, synthesis, and characteristics of each parameter estimation method for adaptive robot control. The strengths and deficiencies of all these methods are also discussed sufficiently. We have concluded by suggesting possible directions for future research in this area.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"55 ","pages":"Pages 279-290"},"PeriodicalIF":7.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578822001389","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 5
Abstract
Composite adaptation and learning techniques were initially proposed for improving parameter convergence in adaptive control and have generated considerable research interest in the last three decades, inspiring numerous robot control applications. The key idea is that more sources of parametric information are applied to drive parameter estimates aside from trajectory tracking errors. Both composite adaptation and learning can ensure superior stability and performance. However, composite learning possesses a unique feature in that online data memory is fully exploited to extract parametric information such that parameter convergence can be achieved without a stringent condition termed persistent excitation. In this article, we provide the first systematic and comprehensive survey of prevalent composite adaptation and learning approaches for robot control, especially focusing on exponential parameter convergence. Composite adaptation is classified into regressor-filtering composite adaptation and error-filtering composite adaptation, and composite learning is classified into discrete-data regressor extension and continuous-data regressor extension. For the sake of clear presentation and better understanding, a general class of robotic systems is applied as a unifying framework to show the motivation, synthesis, and characteristics of each parameter estimation method for adaptive robot control. The strengths and deficiencies of all these methods are also discussed sufficiently. We have concluded by suggesting possible directions for future research in this area.
期刊介绍:
The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles:
Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected.
Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and
Tutorial research Article: Fundamental guides for future studies.