LiFi and Hybrid WiFi/LiFi indoor networking: From theory to practice

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Optical Switching and Networking Pub Date : 2023-02-01 DOI:10.1016/j.osn.2022.100699
Mohammad Reza Ghaderi
{"title":"LiFi and Hybrid WiFi/LiFi indoor networking: From theory to practice","authors":"Mohammad Reza Ghaderi","doi":"10.1016/j.osn.2022.100699","DOIUrl":null,"url":null,"abstract":"<div><p>Light fidelity (LiFi) is a wireless optical communication<span> (WOC) technology that holds the key to solving the challenges of 5th and higher generation mobile networks. LiFi is a two-way wireless communication<span><span><span> technology that enables high-speed transmission on both up and down links simultaneously. Today, researchers and manufacturers consider LiFi technology as an essential solution for radio frequency (RF) spectrum limitation due to growing demand of Internet users. In addition, integration of various communication technologies such as wireless fidelity (WiFi) and LiFi can help to overcome the traffic restriction challenge caused by the growing demand of Internet users. Although LiFi provides high-speed data transfer capability, it has some weaknesses such as coverage. So, hybrid WiFi/LiFi network can uses fast data transfer from LiFi and wide coverage from WiFi. Their integration can complement the shortcomings of each of these technologies and increases the network performance. In this work, while describing LiFi theory, the recent studies in this field are presented. Theoretical and practical concepts of LiFi-based indoor networks, issues such as network structures, cell </span>deployment models, </span>modulation techniques<span>, multiple access schemes, criteria for measuring network performance, and scenario-based architectures for implementing a real LiFi-based indoor network based on up-to-date equipment manufactured by some LiFi manufacturers are discussed in detail.</span></span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"47 ","pages":"Article 100699"},"PeriodicalIF":1.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427722000352","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Light fidelity (LiFi) is a wireless optical communication (WOC) technology that holds the key to solving the challenges of 5th and higher generation mobile networks. LiFi is a two-way wireless communication technology that enables high-speed transmission on both up and down links simultaneously. Today, researchers and manufacturers consider LiFi technology as an essential solution for radio frequency (RF) spectrum limitation due to growing demand of Internet users. In addition, integration of various communication technologies such as wireless fidelity (WiFi) and LiFi can help to overcome the traffic restriction challenge caused by the growing demand of Internet users. Although LiFi provides high-speed data transfer capability, it has some weaknesses such as coverage. So, hybrid WiFi/LiFi network can uses fast data transfer from LiFi and wide coverage from WiFi. Their integration can complement the shortcomings of each of these technologies and increases the network performance. In this work, while describing LiFi theory, the recent studies in this field are presented. Theoretical and practical concepts of LiFi-based indoor networks, issues such as network structures, cell deployment models, modulation techniques, multiple access schemes, criteria for measuring network performance, and scenario-based architectures for implementing a real LiFi-based indoor network based on up-to-date equipment manufactured by some LiFi manufacturers are discussed in detail.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LiFi和混合WiFi/LiFi室内网络:从理论到实践
光保真(LiFi)是一种无线光通信(WOC)技术,是解决第五代及更高一代移动网络挑战的关键。LiFi是一种双向无线通信技术,可以同时在上行链路和下行链路上进行高速传输。如今,由于互联网用户的需求不断增长,研究人员和制造商认为LiFi技术是解决射频(RF)频谱限制的重要解决方案。此外,无线保真(WiFi)和LiFi等各种通信技术的集成有助于克服互联网用户日益增长的需求带来的交通限制挑战。尽管LiFi提供了高速数据传输能力,但它也有一些弱点,如覆盖范围。因此,WiFi/LiFi混合网络可以使用来自LiFi的快速数据传输和来自WiFi的广泛覆盖。它们的集成可以弥补每种技术的不足,提高网络性能。在这项工作中,在描述LiFi理论的同时,介绍了该领域的最新研究。详细讨论了基于LiFi的室内网络的理论和实践概念,诸如网络结构、小区部署模型、调制技术、多址方案、测量网络性能的标准以及基于场景的架构等问题,这些问题用于基于一些LiFi制造商制造的最新设备来实现真正的基于LiFi的室内网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
期刊最新文献
Energy efficient resource aware protection with rapid failure recovery in cloud-ready elastic optical networks Modeling and upgrade of disaster-resilient interdependent networks using machine learning Self-adjusting resilient control plane for virtual software-defined optical networks NFV recovery strategies for critical services after massive failures in optical networks Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1