Clickable Polyprolines from Azido-proline N-Carboxyanhydride

IF 4.7 Q1 POLYMER SCIENCE ACS polymers Au Pub Date : 2023-07-16 DOI:10.1021/acspolymersau.3c00011
Rachel E. Detwiler, Thomas J. McPartlon, Clara S. Coffey and Jessica R. Kramer*, 
{"title":"Clickable Polyprolines from Azido-proline N-Carboxyanhydride","authors":"Rachel E. Detwiler,&nbsp;Thomas J. McPartlon,&nbsp;Clara S. Coffey and Jessica R. Kramer*,&nbsp;","doi":"10.1021/acspolymersau.3c00011","DOIUrl":null,"url":null,"abstract":"<p >Polyproline is a material of great interest in biomedicine due to its helical scaffold of structural importance in collagen and mucins and its ability to gel and to change conformations in response to temperature. Appending of function-modulating chemical groups to such a material is desirable to diversify potential applications. Here, we describe the synthesis of high-molecular-weight homo, block, and statistical polymers of azide-functionalized proline. The azide groups served as moieties for highly efficient click-grafting, as stabilizers of the polyproline PPII helix, and as modulators of thermoresponsiveness. Saccharides and ethylene glycol were utilized to explore small-molecule grafting, and glutamate polymers were utilized to form polyelectrolyte bottlebrush architectures. Secondary structure effects of both the azide and click modifications, as well as lower critical solution temperature behavior, were characterized. The polyazidoprolines and click products were well tolerated by live human cells and are expected to find use in diverse biomedical applications.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 5","pages":"383–393"},"PeriodicalIF":4.7000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS polymers Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acspolymersau.3c00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polyproline is a material of great interest in biomedicine due to its helical scaffold of structural importance in collagen and mucins and its ability to gel and to change conformations in response to temperature. Appending of function-modulating chemical groups to such a material is desirable to diversify potential applications. Here, we describe the synthesis of high-molecular-weight homo, block, and statistical polymers of azide-functionalized proline. The azide groups served as moieties for highly efficient click-grafting, as stabilizers of the polyproline PPII helix, and as modulators of thermoresponsiveness. Saccharides and ethylene glycol were utilized to explore small-molecule grafting, and glutamate polymers were utilized to form polyelectrolyte bottlebrush architectures. Secondary structure effects of both the azide and click modifications, as well as lower critical solution temperature behavior, were characterized. The polyazidoprolines and click products were well tolerated by live human cells and are expected to find use in diverse biomedical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
叠氮-脯氨酸n -羧酸氢化物的可点击聚脯氨酸
聚脯氨酸由于其在胶原和粘蛋白中具有重要结构的螺旋支架以及其凝胶化和随温度变化构象的能力,在生物医学中引起了极大的兴趣。在这种材料上添加功能调节化学基团是使潜在应用多样化所需要的。在这里,我们描述了叠氮化物官能化脯氨酸的高分子量均聚物、嵌段物和统计聚合物的合成。叠氮化物基团作为高效点击接枝的部分,作为聚脯氨酸PPII螺旋的稳定剂,以及作为热响应性的调节剂。糖和乙二醇被用于探索小分子接枝,谷氨酸聚合物被用于形成聚电解质瓶状结构。表征了叠氮化物和点击改性的二次结构效应,以及较低的临界溶液温度行为。聚叠氮脯氨酸和点击产品被活的人体细胞耐受性良好,有望在各种生物医学应用中找到用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Design of Highly Conductive PILs by Simple Modification of Poly(epichlorohydrin-co-ethylene oxide) with Monosubstituted Imidazoles Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1