{"title":"A role for Hes1 in constraining germinal center B cell formation","authors":"Xingxing Shao , Xin Liu , Hai Qi","doi":"10.1016/j.cellin.2023.100078","DOIUrl":null,"url":null,"abstract":"<div><p>Germinal center is a transient lymphoid tissue structure in which B cells undergo affinity maturation and differentiate into memory B cells and plasma cells. GC formation depends on B cell expression of BCL6, a master transcription regulator of the GC state. Bcl6 expression is under elaborate control by external signals. HES1 plays important roles in T-cell lineage commitment, although little is known about its potential roles in GC formation. Here we report that B-cell-specific HES1 deletion causes a significant increase in GC formation, leading to increased production of plasma cells. We further provide evidence that HES1 inhibits BCL6 expression in a bHLH domain-dependent manner. Our study suggests a new layer of regulation of GC initiation mediated by HES1 and, by inference, Notch signals <em>in vivo</em>.</p></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"2 2","pages":"Article 100078"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell insight","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772892723000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Germinal center is a transient lymphoid tissue structure in which B cells undergo affinity maturation and differentiate into memory B cells and plasma cells. GC formation depends on B cell expression of BCL6, a master transcription regulator of the GC state. Bcl6 expression is under elaborate control by external signals. HES1 plays important roles in T-cell lineage commitment, although little is known about its potential roles in GC formation. Here we report that B-cell-specific HES1 deletion causes a significant increase in GC formation, leading to increased production of plasma cells. We further provide evidence that HES1 inhibits BCL6 expression in a bHLH domain-dependent manner. Our study suggests a new layer of regulation of GC initiation mediated by HES1 and, by inference, Notch signals in vivo.