Convolutional neural networks for traumatic brain injury classification and outcome prediction

Laura Zinnel, Sarah A. Bentil
{"title":"Convolutional neural networks for traumatic brain injury classification and outcome prediction","authors":"Laura Zinnel,&nbsp;Sarah A. Bentil","doi":"10.1016/j.hsr.2023.100126","DOIUrl":null,"url":null,"abstract":"<div><p>The detection and classification of traumatic brain injury (TBI) by medical professionals can vary due to subjectivity and differences in experience. Thus, a computational approach for detecting and classifying TBI would be invaluable for an objective diagnosis of this injury. In this review paper, various machine learning algorithms used to detect, classify, and predict the severity and outcomes of TBI in a clinical setting are discussed. The most promising of these algorithms is the convolutional neural network (CNN), which is highlighted in the review.</p></div>","PeriodicalId":73214,"journal":{"name":"Health sciences review (Oxford, England)","volume":"9 ","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health sciences review (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772632023000521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detection and classification of traumatic brain injury (TBI) by medical professionals can vary due to subjectivity and differences in experience. Thus, a computational approach for detecting and classifying TBI would be invaluable for an objective diagnosis of this injury. In this review paper, various machine learning algorithms used to detect, classify, and predict the severity and outcomes of TBI in a clinical setting are discussed. The most promising of these algorithms is the convolutional neural network (CNN), which is highlighted in the review.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络在颅脑损伤分类和预后预测中的应用
医学专业人员对创伤性脑损伤(TBI)的检测和分类可能因主观性和经验差异而有所不同。因此,检测和分类创伤性脑损伤的计算方法对于这种损伤的客观诊断将是非常宝贵的。在这篇综述文章中,讨论了在临床环境中用于检测、分类和预测TBI严重程度和结果的各种机器学习算法。这些算法中最有前途的是卷积神经网络(CNN),这在综述中得到了强调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Health sciences review (Oxford, England)
Health sciences review (Oxford, England) Medicine and Dentistry (General)
自引率
0.00%
发文量
0
审稿时长
75 days
期刊最新文献
An integrative review of cancer-related cachexia and sarcopenia: A different focus in malignant hematology Screening for pancreatic cancer among smokers as high-risk individuals: Systematic review and meta-analysis of prospective cohort studies The impact of reduced perineal lacerations during delivery: A systematic review Revitalizing respiration: A comprehensive review of oxygen therapy in interstitial lung diseases Deciphering the intricacies of immune system dysfunction and its impact on diabetes mellitus: Revisiting the communication strategies to manage diabetes mellitus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1