Reproducing the color with reformulated recipe

Jinming Fan , Chao Qian , Shaodong Zhou
{"title":"Reproducing the color with reformulated recipe","authors":"Jinming Fan ,&nbsp;Chao Qian ,&nbsp;Shaodong Zhou","doi":"10.1016/j.aichem.2023.100003","DOIUrl":null,"url":null,"abstract":"<div><p>A reverse molecule contribution (reMC) - molecule contribution (MC) – Machine learning (ML) protocol for disassemble and reproduce the spectrum is presented. By splitting the mixture spectrum with monochromophoric spectra in the database in a “Peeling-Onion” manner, a new recipe can be obtained. Upon comparison of the reproduced spectrum (with the forward molecular contribution - machine learning method) with the original one, the reliability of the proposed method is justified.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"1 1","pages":"Article 100003"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747723000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A reverse molecule contribution (reMC) - molecule contribution (MC) – Machine learning (ML) protocol for disassemble and reproduce the spectrum is presented. By splitting the mixture spectrum with monochromophoric spectra in the database in a “Peeling-Onion” manner, a new recipe can be obtained. Upon comparison of the reproduced spectrum (with the forward molecular contribution - machine learning method) with the original one, the reliability of the proposed method is justified.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用重新配方再现颜色
提出了一种用于分解和再现光谱的反向分子贡献(reMC)-分子贡献(MC)-机器学习(ML)协议。通过在数据库中以“剥洋葱皮”的方式将混合物光谱与单色光谱分开,可以获得新的配方。通过将再现的光谱(采用正向分子贡献-机器学习方法)与原始光谱进行比较,证明了所提出方法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
期刊最新文献
AI-driven prediction of drug activity against Toxoplasma gondii: Data augmentation and deep neural networks for limited datasets Small-dataset-orientated data-driven screening for catalytic propane activation Machine learning for active sites prediction of quinoline derivatives Machine learning approaches for modelling of molecular polarizability in gold nanoclusters Evaluation of machine learning models for the accelerated prediction of density functional theory calculated 19F chemical shifts based on local atomic environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1