Optimal discharge of patients from intensive care via a data-driven policy learning framework

IF 1.5 Q3 HEALTH CARE SCIENCES & SERVICES Operations Research for Health Care Pub Date : 2023-09-01 DOI:10.1016/j.orhc.2023.100400
Fernando Lejarza , Jacob Calvert , Misty M. Attwood , Daniel Evans , Qingqing Mao
{"title":"Optimal discharge of patients from intensive care via a data-driven policy learning framework","authors":"Fernando Lejarza ,&nbsp;Jacob Calvert ,&nbsp;Misty M. Attwood ,&nbsp;Daniel Evans ,&nbsp;Qingqing Mao","doi":"10.1016/j.orhc.2023.100400","DOIUrl":null,"url":null,"abstract":"<div><p>Clinical decision support tools rooted in machine learning and optimization can provide significant value to healthcare providers through better management of intensive care units<span>. In particular, it is important that intensive care unit patient discharge decisions account for the nuanced trade-off between decreasing the length of stay and the risk of readmission or death after discharge<span> of a patient. This work introduces a comprehensive framework (i.e., not geared towards any particular disease or condition) for capturing this trade-off and to recommend optimal discharge timing decisions given the electronic health records of a patient. A data-driven approach is used to derive a parsimonious, discrete state space representation to represent the physiological condition of a given patient. Based on this model and a given cost function, an infinite-horizon discounted Markov decision process is formulated and solved numerically to compute an optimal discharge policy, whose performance is assessed using off-policy evaluation strategies. Extensive numerical experiments are performed to validate the proposed framework using real-life intensive care unit patient data.</span></span></p></div>","PeriodicalId":46320,"journal":{"name":"Operations Research for Health Care","volume":"38 ","pages":"Article 100400"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research for Health Care","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211692323000231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 2

Abstract

Clinical decision support tools rooted in machine learning and optimization can provide significant value to healthcare providers through better management of intensive care units. In particular, it is important that intensive care unit patient discharge decisions account for the nuanced trade-off between decreasing the length of stay and the risk of readmission or death after discharge of a patient. This work introduces a comprehensive framework (i.e., not geared towards any particular disease or condition) for capturing this trade-off and to recommend optimal discharge timing decisions given the electronic health records of a patient. A data-driven approach is used to derive a parsimonious, discrete state space representation to represent the physiological condition of a given patient. Based on this model and a given cost function, an infinite-horizon discounted Markov decision process is formulated and solved numerically to compute an optimal discharge policy, whose performance is assessed using off-policy evaluation strategies. Extensive numerical experiments are performed to validate the proposed framework using real-life intensive care unit patient data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过数据驱动的政策学习框架实现重症监护患者的最佳出院
植根于机器学习和优化的临床决策支持工具可以通过更好地管理重症监护室为医疗保健提供者提供重大价值。特别重要的是,重症监护室患者的出院决定要考虑到缩短住院时间和患者出院后再次入院或死亡风险之间的微妙权衡。这项工作引入了一个全面的框架(即,不针对任何特定的疾病或状况)来捕捉这种权衡,并在给定患者的电子健康记录的情况下建议最佳出院时间决策。数据驱动的方法用于推导简约的离散状态空间表示,以表示给定患者的生理状况。基于该模型和给定的成本函数,建立了一个无限时域折扣马尔可夫决策过程,并对其进行了数值求解,以计算最优排放策略,并使用非策略评估策略来评估其性能。使用真实的重症监护室患者数据进行了大量的数值实验,以验证所提出的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Operations Research for Health Care
Operations Research for Health Care HEALTH CARE SCIENCES & SERVICES-
CiteScore
3.90
自引率
0.00%
发文量
9
审稿时长
69 days
期刊最新文献
Editorial Board Preference-based allocation of patients to nursing homes Balancing continuity of care and home care schedule costs using blueprint routes Outpatient appointment systems: A new heuristic with patient classification A modeling framework for evaluating proactive and reactive nurse rostering strategies — A case study from a Neonatal Intensive Care Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1