Convergent relationships between flower economics and hydraulic traits across aquatic and terrestrial herbaceous plants

IF 4.6 1区 生物学 Q1 PLANT SCIENCES Plant Diversity Pub Date : 2023-09-01 DOI:10.1016/j.pld.2023.01.006
Yan Ke , Feng-Ping Zhang , Yun-Bing Zhang , Wei Li , Qin Wang , Da Yang , Jiao-Lin Zhang , Kun-Fang Cao
{"title":"Convergent relationships between flower economics and hydraulic traits across aquatic and terrestrial herbaceous plants","authors":"Yan Ke ,&nbsp;Feng-Ping Zhang ,&nbsp;Yun-Bing Zhang ,&nbsp;Wei Li ,&nbsp;Qin Wang ,&nbsp;Da Yang ,&nbsp;Jiao-Lin Zhang ,&nbsp;Kun-Fang Cao","doi":"10.1016/j.pld.2023.01.006","DOIUrl":null,"url":null,"abstract":"<div><p>Maintaining open flowers is critical for successful pollination and depends on long-term water and carbon balance. Yet the relationship between how flower hydraulic traits are coordinated in different habitats is poorly understood. Here, we hypothesize that the coordination and trade-offs between floral hydraulics and economics traits are independent of environmental conditions. To test this hypothesis, we investigated a total of 27 flower economics and hydraulic traits in six aquatic and six terrestrial herbaceous species grown in a tropical botanical garden. We found that although there were a few significant differences, most flower hydraulics and economics traits did not differ significantly between aquatic and terrestrial herbaceous plants. Both flower mass per area and floral longevity were significantly positively correlated with the time required for drying full-hydrated flowers to 70% relative water content. Flower dry matter content was strongly and positively related to drought tolerance of the flowers as indicated by flower water potential at the turgor loss point. In addition, there was a trade-off between hydraulic efficiency and the construction cost of a flower across species. Our results show that flowers of aquatic and terrestrial plants follow the same economics spectrum pattern. These results suggest a convergent flower economics design across terrestrial and aquatic plants, providing new insights into the mechanisms by which floral organs adapt to aquatic and terrestrial habitats.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468265923000239","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Maintaining open flowers is critical for successful pollination and depends on long-term water and carbon balance. Yet the relationship between how flower hydraulic traits are coordinated in different habitats is poorly understood. Here, we hypothesize that the coordination and trade-offs between floral hydraulics and economics traits are independent of environmental conditions. To test this hypothesis, we investigated a total of 27 flower economics and hydraulic traits in six aquatic and six terrestrial herbaceous species grown in a tropical botanical garden. We found that although there were a few significant differences, most flower hydraulics and economics traits did not differ significantly between aquatic and terrestrial herbaceous plants. Both flower mass per area and floral longevity were significantly positively correlated with the time required for drying full-hydrated flowers to 70% relative water content. Flower dry matter content was strongly and positively related to drought tolerance of the flowers as indicated by flower water potential at the turgor loss point. In addition, there was a trade-off between hydraulic efficiency and the construction cost of a flower across species. Our results show that flowers of aquatic and terrestrial plants follow the same economics spectrum pattern. These results suggest a convergent flower economics design across terrestrial and aquatic plants, providing new insights into the mechanisms by which floral organs adapt to aquatic and terrestrial habitats.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水生和陆生草本植物的花经济性和水力特性之间的趋同关系
保持开放的花朵对成功授粉至关重要,这取决于长期的水和碳平衡。然而,人们对不同生境中花朵水力特征如何协调之间的关系知之甚少。在这里,我们假设花卉水力学和经济特征之间的协调和权衡与环境条件无关。为了验证这一假设,我们调查了热带植物园中生长的六种水生和六种陆生草本植物的27个花朵经济和水力特征。我们发现,尽管存在一些显著差异,但水生和陆生草本植物的大多数花水力学和经济性状没有显著差异。单位面积的花质量和花的寿命都与将完全水合的花干燥到70%相对含水量所需的时间显著正相关。花干物质含量与花的耐旱性呈正相关,表现为在膨压损失点的花水势。此外,水力效率和跨物种花卉的施工成本之间存在权衡。我们的研究结果表明,水生植物和陆生植物的花朵遵循相同的经济光谱模式。这些结果表明,陆地和水生植物的花朵经济学设计趋同,为花器官适应水生和陆地栖息地的机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Diversity
Plant Diversity Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍: Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that advance our understanding of the past and current distribution of plants, contribute to the development of more phylogenetically accurate taxonomic classifications, present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists. While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance. Fields covered by the journal include: plant systematics and taxonomy- evolutionary developmental biology- reproductive biology- phylo- and biogeography- evolutionary ecology- population biology- conservation biology- palaeobotany- molecular evolution- comparative and evolutionary genomics- physiology- biochemistry
期刊最新文献
Population genetic insights into the conservation of common walnut (Juglans regia) in Central Asia. The mid-domain effect in flowering phenology. Aboveground biomass stocks of species-rich natural forests in southern China are influenced by stand structural attributes, species richness and precipitation A review of ethnobotanical studies reveals over 500 medicinal plants in Mindanao, Philippines Progress in systematics and biogeography of Orchidaceae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1