{"title":"Piezoelectricity activates persulfate for water treatment: A perspective","authors":"Zhi Li , Shenyu Lan , Mingshan Zhu","doi":"10.1016/j.ese.2023.100329","DOIUrl":null,"url":null,"abstract":"<div><p>Advanced oxidation processes (AOPs) utilizing persulfate (PS) offer great potential for wastewater treatment. Yet, the dependency on energy and chemical-intensive activation techniques, such as ultraviolet radiation and transition metal ions, constrains their widespread adoption. Recognizing this limitation, researchers are turning towards the piezoelectric effect—a novel, energy-efficient method for PS activation that capitalizes on the innate piezoelectric characteristics of materials. Intriguingly, this method taps into weak renewable mechanical forces omnipresent in nature, ranging from wind, tides, water flow, sound, and atmospheric forces. In this perspective, we delve into the burgeoning realm of piezoelectric/PS-AOPs, elucidating its fundamental principles, the refinement of piezoelectric materials, potential mechanical force sources, and pertinent application contexts. This emerging technology harbors significant potential as a pivotal element in wastewater pretreatment and may spearhead innovations in future water pollution control engineering.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"18 ","pages":"Article 100329"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498423000947","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced oxidation processes (AOPs) utilizing persulfate (PS) offer great potential for wastewater treatment. Yet, the dependency on energy and chemical-intensive activation techniques, such as ultraviolet radiation and transition metal ions, constrains their widespread adoption. Recognizing this limitation, researchers are turning towards the piezoelectric effect—a novel, energy-efficient method for PS activation that capitalizes on the innate piezoelectric characteristics of materials. Intriguingly, this method taps into weak renewable mechanical forces omnipresent in nature, ranging from wind, tides, water flow, sound, and atmospheric forces. In this perspective, we delve into the burgeoning realm of piezoelectric/PS-AOPs, elucidating its fundamental principles, the refinement of piezoelectric materials, potential mechanical force sources, and pertinent application contexts. This emerging technology harbors significant potential as a pivotal element in wastewater pretreatment and may spearhead innovations in future water pollution control engineering.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.