Prediction of Alzheimer's disease from magnetic resonance imaging using a convolutional neural network

Kevin de Silva, Holger Kunz
{"title":"Prediction of Alzheimer's disease from magnetic resonance imaging using a convolutional neural network","authors":"Kevin de Silva,&nbsp;Holger Kunz","doi":"10.1016/j.ibmed.2023.100091","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>The primary goal of this study is to examine if a convolutional neural network (CNN) can be applied as a diagnostic tool for predicting Alzheimer's Disease (AD) from magnetic resonance imaging (MRI) using the MIRIAD-dataset (Minimal Interval Resonance Imaging in Alzheimer's Disease) from one single central slice of the brain.</p></div><div><h3>Methods</h3><p>The MIRIAD dataset contains patients' health records represented by a set of MRI scans of the brain and further diagnostic data. Hyperparameters and configurations of CNNs were optimized to determine the best-performing model. The CNN was implemented in Python with the deep learning library ‘Keras’ using Linux/Ubuntu as the operating system.</p></div><div><h3>Results</h3><p>This study obtained the following best performance metrics for predicting Alzheimer's Disease from MRI with Matthew's Correlation Coefficient (MCC) of 0.77; accuracy of 0.89; F1-score of 0.89; AUC of 0.92. The computational time for the training of a CNN takes less than 30 sec. s with a GPU (graphics processing unit). The prediction takes less than 1 sec. on a standard PC.</p></div><div><h3>Conclusions</h3><p>The study suggests that an axial MRI scan can be used to diagnose if a patient has Alzheimer's Disease with an AUC score of 0.92.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"7 ","pages":"Article 100091"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521223000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Objectives

The primary goal of this study is to examine if a convolutional neural network (CNN) can be applied as a diagnostic tool for predicting Alzheimer's Disease (AD) from magnetic resonance imaging (MRI) using the MIRIAD-dataset (Minimal Interval Resonance Imaging in Alzheimer's Disease) from one single central slice of the brain.

Methods

The MIRIAD dataset contains patients' health records represented by a set of MRI scans of the brain and further diagnostic data. Hyperparameters and configurations of CNNs were optimized to determine the best-performing model. The CNN was implemented in Python with the deep learning library ‘Keras’ using Linux/Ubuntu as the operating system.

Results

This study obtained the following best performance metrics for predicting Alzheimer's Disease from MRI with Matthew's Correlation Coefficient (MCC) of 0.77; accuracy of 0.89; F1-score of 0.89; AUC of 0.92. The computational time for the training of a CNN takes less than 30 sec. s with a GPU (graphics processing unit). The prediction takes less than 1 sec. on a standard PC.

Conclusions

The study suggests that an axial MRI scan can be used to diagnose if a patient has Alzheimer's Disease with an AUC score of 0.92.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用卷积神经网络从磁共振成像预测阿尔茨海默病
本研究的主要目的是研究卷积神经网络(CNN)是否可以作为一种诊断工具,使用来自大脑单个中央切片的miriad数据集(阿尔茨海默病最小间隔磁共振成像)从磁共振成像(MRI)中预测阿尔茨海默病(AD)。方法MIRIAD数据集包含由一组大脑MRI扫描和进一步诊断数据表示的患者健康记录。对cnn的超参数和配置进行优化,以确定性能最佳的模型。CNN是用Python实现的,使用深度学习库Keras,使用Linux/Ubuntu作为操作系统。结果本研究获得了MRI预测阿尔茨海默病的最佳性能指标,马修相关系数(MCC)为0.77;准确度为0.89;f1得分为0.89;AUC为0.92。使用GPU(图形处理单元)训练CNN的计算时间不到30秒。在标准PC上,预测时间不到1秒。结论本研究提示轴向MRI扫描可用于诊断AUC评分为0.92的阿尔茨海默病患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1